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ABSTRACT
We investigate an unobtrusive and 24×7 human distress de-
tection and signaling system, Always Alert, that requires
the smartphone, and not its human owner, to be on alert.
The system leverages the microphone sensor, at least one of
which is available on every phone, and assumes the avail-
ability of a data network. We propose a novel two-stage su-
pervised learning framework, using support vector machines
(SVMs), that executes on a user’s smartphone and monitors
natural vocal expressions of fear — screaming and crying in
our study — when a human being is in harm’s way. The chal-
lenge is to achieve a high distress detection rate while ensur-
ing that the false alarm rate is a manageable overhead, while
a typical smartphone user goes about living life as usual. We
train the learning framework with carefully selected audio
fingerprints of distress and of varied environmental contexts.
The audio is used to tune the learning framework to obtain a
desirable distress detection rate and false alarm rate (FAR).
The ability of the proposed framework to detect distress in
rather challenging audio environments is demonstrated. Ex-
ploiting the time contiguous nature of false alarms further
allows us to reduce the FAR. We show the feasibility of us-
ing our framework anytime and anywhere by testing it over
many hours of audio fingerprints recorded by volunteers on
their smartphones, as they went about their daily routines.
We are able to achieve high distress detection rates at an av-
erage overhead that is equivalent to about 1 facebook post
every 3 to 4 hours.

1. INTRODUCTION
Security systems (burglar alarms, intrusion detection

systems) abound for residential and commercial estab-
lishments. A breach of security leads to an alarm that is
followed by a visit from law enforcement agencies. Of-
ten, the visit is preceded by an attempt to confirm that
a breach had indeed taken place, that is the alarm was
not a false alarm [10].

While crimes against individuals are probably as old
as humanity, anytime anywhere security for a typical
individual going about life as usual is fairly new. It
has been made possible by smart devices (for example,
smartphones and watches) and wide network coverage.

However, the current approaches leave a lot to be de-
sired. Most approaches require the smartphone (or de-
vice) owner to be alert enough to raise panic using the
phone, often by what is equivalent to pressing a panic
button. The human needs to be constantly on guard.
While this is desirable when passing through a place
known for its notoriety, it is unnatural and onerous to
be on guard always, especially when in familiar places
and amongst familiar faces [1, 5].

We propose Always Alert (AA), a distress detection
system, in which a person’s smartphone is always on
guard. AA receives audio inputs from the phone’s mi-
crophone and processes them to detect the presence
of screaming and crying, which are known natural re-
sponses to distressful circumstances [13]. AA needs to
address two challenges before it can be deployed in the
real world. Firstly, it must do its primary job of detect-
ing distress with high accuracy. It must achieve a good
accuracy in real world settings in which the background
often contains other sounds. These other sounds form
the environmental context of the phone (and its user).
As a result, audio inputs received by a user’s phone are
not as clean as recordings made under controlled and
quiet settings. Also, a user may place the phone at var-
ious locations, for example, in hand, or in a pocket, or
in a bag, further affecting the quality of audio received
by the phone’s microphone. Secondly, it must trigger
a very small number of false alarms. Specifically, the
overheads on law enforcement due to false alarms must
be minimal.

There are many other works on scream detection [18,
31, 35]. To our knowledge none of them address detec-
tion 24× 7 over varying environmental contexts. Also,
they often use fixed sensors and training over carefully
chosen non-scream audio samples. For example, in [18]
the authors use microphone arrays and train their learn-
ing framework to distinguish between a scream, and
sounds created on applause, laughter, crying, glass break,
and clap. In contrast, to exemplify the challenges that
AA must address, it must be able to detect screams
when a microwave or any other home appliance is on in
the background. Also, AA must not falsely categorize
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sounds from a home appliance as screams and forward
the false detections (alarms) to law enforcement.

AA follows a four stage approach to distress detection.
The first stage, Speech Filter, detects distress with high
probability. Speech Filter is trained using clean scream,
crying, and normal speech samples. However, Speech
Filter leads to a significant (about 10%) false alarm
rate. Audio that is accepted as a scream by Speech Fil-
ter is then processed by Context Filter. This stage is
trained to understand environmental contexts. It brings
down the false alarm rate by an order of magnitude
(to about 1%) and has a negligible impact on the true
scream detection rate. A FAR of 1% is about 15minutes
of false alarms generated by a user of AA over 24 hours.
This is further reduced by Temporal Analysis, which ex-
ploits the fact that false alarms often occur contiguously
in time. The environmental context is responsible for
them and often does not change for extended periods
of time. All audio samples that pass the above stages
as a distress sample are sent to friends-in-the-detection
loop before escalation to law enforcement. Evaluation of
AA using volunteer data suggests that the false alarms
amount to an average overhead of one (facebook c©) post
every 3 to 4 hours to friends-in-the-detection loop.

Our specific contributions are as follows.

1. To our knowledge, we are the first to propose an
entirely smartphone audio based 24 × 7 distress
detection system. All stages starting with record-
ing of audio samples, classification, and raising of
alarm, execute on the phone in real time. We pro-
vide an outline of the implementation of the appli-
cation and a thorough evaluation of its suitability
to execute on a smartphone.

2. We propose and evaluate a novel multistage dis-
tress detection and false alarm rejection frame-
work that is able to achieve high distress detec-
tion rates and low false alarm rates, even in the
presence of a variety of sounds from environmen-
tal contexts. The framework allows selection of a
desirable tradeoff between false alarm rate (FAR)
and detection rate, across a range of harsh envi-
ronmental contexts.

3. Evaluation of the feasibility of the use of friends-
in-the-detection-loop to further reduce the FAR so
as not to create an unnecessary burden on law en-
forcement.

4. Extensive evaluation of our proposals on many hours
of volunteer data that was collected by 16 vol-
unteers using smartphones and going about their
usual daily routine. For volunteer collected data
we show that overheads due to false alarm rate are
on an average equivalent to a facebook post every
3-4 hours.
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Figure 1: Architecture of AA.

Rest of the paper is organized as follows. Section 2 de-
scribes the architecture of AA. Sections 3 and 4 describe
data collection and processing. Section 5 describes our
learning framework, which is followed by a description
of temporal analysis in Section 6. Evaluation method-
ology is described in Section 7. Section 8 and 9 de-
tail the performance evaluation of AA. Section 10 de-
scribes our implementation on Android and its energy
footprint. We discuss our limitations and a few possible
approaches in Section 11. Related works are described
in 12. We conclude in 13.

2. ARCHITECTURE
Figure 1 shows the various blocks that constitute AA.

Note that all of the blocks other than friends-in-the-loop
and law enforcement execute as a smartphone appli-
cation. AA senses the environmental context and any
human audio signals using a phone’s one or more micro-
phones. The resulting audio is sent through the voice
processing block, which converts the input audio stream
into smaller chunks, samples of 2 seconds length, that
are each converted into (MFCC) feature vectors. The
feature vectors are input to the learning framework that
consists of the blocks Normal Speech Filter and Context
Filter. The phone categorizes a sample to belong to the
distress category only if both the Normal Speech Filter
and the Context Filter categorize the sample as distress.

Once a sample is categorized as distress, the phone
sets its state to alarm raised. The alarm is sent to
friend(s)-in-loop together with a snapshot of audio around
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the time of alarm, who for this study are subscribers to a
facebook page. Temporal Analysis ensures that alarms
that are contiguous in time and hence are very likely to
be raised due to similar reasons are not forwarded again
to the friend(s)-in-loop. It also exploits time informa-
tion in the recorded audio to reject likely false alarm
culprits like music, as we will show later.

The friend(s)-in-the-loop act as a final filter. Humans
can be very good at rejecting alarms due to environmen-
tal context as they can easily detect the lack of a hu-
man scream in audio snippets of reasonable clarity [12].
The friend(s)-in-loop can reduce the overhead of false
alarms on law enforcement. They may directly escalate
to law enforcement or may confirm to the phone ap-
plication whether the sample detected as distress is in
reality distress or not. Of course, they will introduce
delays. Later, we will look at the expected delays be-
tween the phone posting an alarm and a friend-in-loop
responding to it.

The rest of the paper will describe and evaluate all
the blocks (except law enforcement). While we only
consider sampling audio information, in case an alarm
is confirmed to not be a false alarm, the phone may send
any other required information, for example, location,
to law enforcement.

3. DATA COLLECTION
We collected audio that is representative of varied en-

vironmental contexts and that captures two expressions
of distress, namely screaming and crying. Data collec-
tion drives were both controlled and uncontrolled. Un-
controlled data collection involved 16 volunteers record-
ing data using smartphones while going about their
daily routines. On the contrary, controlled data col-
lection was done by selected people and was targeted
towards collecting specific kinds of audio data. Also,
effort was made to get as clean a recording as possi-
ble. For example, the collection was done with phone
in hand so that recordings were of good fidelity.

All distress audio data was carried out in a controlled
manner. We also collected sounds from a set of environ-
mental contexts in a controlled manner. All collected
data is recorded at 44.1KHz and is encoded at 16 bits
per sample.

3.1 Controlled Data Collection
Distress Audio Data: In this work we consider

only screaming and crying. Screams and cry data was
collected from the Internet [7], TV serials, movies, and
some data was collected from student actors of age group
18 to 22 years. Silence periods in the beginning and at
the end of all recordings were pruned. The pruned audio
files were further split into 2 second long audio samples.
We have a total of 340 two second long audio samples
that represent distress. Out of 340 samples, 315 were

from females and the rest few from males.
Normal Human Speech Data: For normal speech

data we collected conversations from TV serials (with-
out background music) and student actors. We have a
total of 580 two second samples of normal speech data.

Environmental Context Data: We sample audio
from five different categories. They are described below.

1. Indoors: This includes the various sounds that are
generated when a person is engaged in activities at
home and office. Conversations with family mem-
bers, with people in a meeting at office, dining
at home, and any other sounds excluding those
generated by equipments and machines found in a
typical home or office. We have 8714 two seconds
samples in this category. This data was collected
by 4 different people using different phones.

2. Outdoors: Outdoors include all sounds when a
person is outside. It includes sounds due to ve-
hicular traffic, sounds while commuting in various
modes of transport like bus, rail, and car. Other
sounds like honking are included. We also were
able to collect about 5 minutes of rainfall. In to-
tal we have 4513 two second samples under this
category. All data was collected using phones.

3. Machinery: This category includes sounds from
machines that are commonly used at home and
office. Collected sounds include that of Vacuum
Cleaners, Hair Dryers, Mixers, Microwave Ovens,
Chimney, Flush, Utensils, Shaving Machine, Wash-
ing Machine, Rinsing Bowl, fans, air conditioners,
and exhausts. The data for this category was col-
lected by a single individual on a mobile and in
total we have 3566 two second samples for this
category. A small percentage of samples were col-
lected from sources on the Internet.

4. TV: This category includes artificial human sounds
and music generated by televisions and radios. We
have a total of 3712 two second samples.

5. Gathering: This category includes sounds in situa-
tions where many people are together. Large num-
ber of people laughing, a crowd cheering, restau-
rants, malls, markets, seminars, applause by a crowd,
and people talking loudly in a metro, are a few ex-
amples. This category contains 1641 two-second
samples in total. Samples were collected using a
phone and from sources on the Internet.

The sounds collected under different categories have
small unavoidable overlaps with each other. For ex-
ample, some of the Home samples had sounds from a
TV and music in the background. Similarly, the Indoors
category will have human speech data in it.
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3.2 Uncontrolled Data Collection
Sixteen volunteers (6 females and 10 males) helped us

with audio data collection as they went about their daily
routines. This data collection was uncontrolled and no
instructions about what must be collected were given.
The collection was done using smartphones that the vol-
unteers were using as their personal phones. The vol-
unteers were provided with an application that helped
them annotate their environmental context. The appli-
cation nudged the volunteer to annotate as and when
a change in sound intensity of greater than 10dB was
detected by it. The volunteers had the option of paus-
ing the recording at will. A total of about 250 hours of
volunteer data was collected.

4. DATA PROCESSING
The learning framework cannot process audio sam-

ples. Data processing involves converting the audio
samples into feature vectors that can be processed by
the learning framework. We convert every 2 second au-
dio sample into a 12 element vector that consists of Mel
Frequency Cepstral Coefficients (MFCC).

MFCC [27] is widely used in many speech and speaker
recognition systems. The mel scale transforms linear
frequency into mel-frequency, which represents the fre-
quencies as perceived by the human ear. Small vari-
ations in frequencies are not noticed in the mel scale.
There are a total of 39 cepstral coefficients. We do not
include the 0th cepstral coefficient and coefficients 13
onwards as including them did not give us good classi-
fication performance. Our feature vector contains cep-
stral coefficients 1 to 12.

5. LEARNING FRAMEWORK
Our supervised learning framework comprises of the

algorithms Speech Filter and Context Filter. Both the
algorithms use support vector machines to classify any
input MFCC vector. Speech Filter uses a SVM model
created using the distress-and-speech training set, while
Context Filter uses a model created using the distress-
and-context training set. The former set consists of the
two categories human speech and scream. The latter
consists of a total of 7 categories. The creation of the
sets is described in detail in Section 7.

Speech Filter is shown in Algorithm 1. It takes as
parameters the audio sample that needs to be classified
in the form of the corresponding MFCC feature vector,
the distress-and-speech model, and a distance measure.
The algorithm returns the sample for further escalation
if it is categorized as distress. Else, it discards the sam-
ple and returns an empty vector. Note that the Speech
Filter model contains just the two categories of distress
and speech, and thus only one hyperplane [21] that sep-
arates speech and distress. As a result the distance es-
timate d̂ returned by the library function svmpredict()

is a scalar. If d̂ > 0 for the input sample, the function
classifies it as distress. Otherwise, it classifies it as nor-
mal speech. The absolute value |d̂| is an indicator of
the confidence with which the classification was made.

Speech Filter takes an input parameter, the thresh-
old distance DT , which allows us to choose the values
of confidence for which a test sample must be classified
as distress. A threshold distance DT < 0 will mean
that Speech Filter will also accept as distress, test sam-
ples that were earlier classified as speech with low con-
fidence. While this will increase the distress detection
rate, it will also increase the false alarm rate. Later in
Section 8, we show the tradeoff between the detection
rate and the false alarm rate (commonly known as the
ROC curve [8]) for −2 ≤ DT ≤ 4.3. A suitable choice
will be arrived at by running the algorithm on the val-
idation and verifying it on the test data sets.

Algorithm 1 Speech Filter algorithm

Require: DSM, VI , DT . . DSM is
the distress-and-speech model, VI the input MFCC
vector, and DT the threshold distance.

Ensure: The output vector VO.
1: d̂ = svmpredict(DSM, VI) . Predict category of VI .

2: if d̂ > DT then . d̂ is the distance from 0.
3: VO ← VI
4: else
5: VO ← φ
6: end if
7:

8: return VO

Context Filter is described in Algorithm 2. It uses
the distress-and-context model that distinguishes be-
tween seven categories, one of them being distress. In
general, for K categories the model uses K(K−1)/2 hy-
perplanes, one hyperplane separating each pair of cate-
gories. Thus, our model has 21 hyperplanes. For every
input sample (MFCC vector) the SVM model outputs a
predicted category and also a distance measure vector,
say d̂, of length 21. Assume the categories are labeled
from 1, 2, . . . ,K. For ease of exposition, let K = 3.
Then d̂(1) stores the distance measure corresponding
to the categories 1 and 2, d̂(2) stores the measure for
the categories 1 and 3, and d̂(3) stores the measure for
categories 2 and 3.

If a distance measure corresponding to categories i
and j is positive, then we say that i wins over j, that is
the input feature vector is more likely to belong to cate-
gory i than to category j. Else, if the distance measure
is negative, j wins over i. Having calculated the winning
category for each of the K(K−1)/2 distance measures,
we sort the K category indexes in decreasing order of
the number of times they won. Call this sorted list of
category indexes as I. SVM (svmpredict()) by default
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returns I(1) as the category of the input sample. That
is if I(1) does not store the index LABEL DISTRESS
of the distress category, SVM will not classify the sam-
ple as distress. Context Filter allows for flexibility by
using the column relaxation parameter CR, such that if
the index of the distress category is amongst the first
CR elements of I, it classifies the input as distress. A
value of CR > 1 therefore allows for a larger distress de-
tection rate at the expense of a larger false alarm rate.
If Context Filter classifies an input as distress, it returns
the vector, else it returns an empty vector.

Note that, given our set of K = 7 categories, CR can
take the values 1, 2, . . . , 7. Also, in Speech Filter we will
vary the threshold distance DT over (−2, 4.5). When
Speech Filter and Context Filter are used together, we
end up with a large number of choices that can be made
over the set of values in the Cartesian product {CR} ×
{DT }. We will see in Section 8, that the space allows us
to choose a good tradeoff between distress detection rate
and false alarm rate. In fact, neither Speech Filter nor
Context Filter but the two in series — Context Filter
placed after Speech Filter — gives us the best detection
rate and FAR tradeoff.

Table 1 shows an example of how different choice of
CR and DT help us choose a better detection rate and
FAR tradeoff. For example, DT = −1.1, CR = 1 gives
a detection rate of 87.38% and FAR of 1.38%. This
tradeoff can be improved by selecting DT = 1.9, CR =
5. At this point, the detection rate improves while the
FAR is unchanged.

DT /CR 1 2 5 6 7

-1.1 1.38 2.78 9.03 14.1 57.57
87.38 91.18 98.88 99.82 100.00

0.4 0.28 1.01 2.75 5.08 5.72
86.83 90.48 97.81 98.61 98.62

1.9 0.11 0.57 1.38 2.41 2.43
85.97 88.95 95.83 96.49 96.5

4.3 0.06 0.29 0.73 1.14 1.14
82.61 84.67 90.70 91.09 91.1

Table 1: An example of how different values of the de-
tection threshold DT and the column relaxation CR al-
low us to choose different detection rate and FAR trade-
off(s). The first row for every value of DT lists the
FAR(s) and the second row lists the detection rates.
The values are a subset of the tradeoff(s) in Figure 2b
when using In Series learning framework.

6. TEMPORAL ANALYSIS
The temporal analysis (TA) block of AA maintains

a state variable which is set when the learning frame-
work classifies an audio sample as distress. The state
variable is unset if no new audio samples are classified

Algorithm 2 Context Filter algorithm

Require: DCM, VI , CR. . DCM is
the distress-and-context model, VI the input MFCC
vector, and CR is the column relaxation.

Ensure: The output vector VO.
1: K ← Number of Categories . We have 7

categories.
2: d̂ = svmpredict(DCM, VI) . d̂ is the distance

measure for the K(K − 1)/2 hyperplanes.
3: k ← 1
4: for i = 1 to K − 1 do
5: for j = i+ 1 to K do
6: if d̂(k) > 0 then
7: C(i)← C(i) + 1
8: else
9: C(j)← C(j) + 1

10: end if
11: k ← k + 1
12: end for
13: end for
14: I ← {i1, . . . , iN ∈ [1, N ] : C(i1) > . . . > C(iN )}
15: for col = 1 to CR do
16: if I(col) == LABEL DISTRESS then
17: VO ← VI return VO
18: end if
19: end for
20: VO ← φ
21: return VO

as distress for a predefined TIMEOUT period. TA
has a very simple role. It does not forward any au-
dio samples classified as scream by the learning frame-
work to friends-in-the-loop if the state variable is set.
This ensures, for a reasonable setting of TIMEOUT ,
that friends-in-the-loop are not flooded by redundant
alarms.

7. METHODOLOGY
The data collected using controlled collection (see

Section 3) is used to create two training sets, namely,
the distress-and-speech set and the distress-and-context
set. The distress-and-speech set includes 50% of all dis-
tress audio samples and also 50% of all normal human
speech samples. In addition, the distress-and-context
set includes 50% of the samples that were collected un-
der the five categories representative of environmental
context that we described in Section 3.

The samples that are not a part of the training sets
are used to create the validation sets. We create four
validation sets. The validation sets are used to find
desirable points of operation (the (DT , CR) pairs) of
our learning framework.

Audio samples that are not part of any training set
and belong to human speech and the five environmental
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context categories are added to each of the four valida-
tion sets. Each sample is added as is (its Clean record-
ing), and also at SNR(s) of 40dB, 20dB, and 10dB. A
given SNR is achieved for a sample by adding Additive-
White-Gaussian-Noise (AWGN) to it in a proportion so
as to achieve the said SNR.

The four validation sets differ from one another in
the SNR of the distress audio samples added to them.
One of the four validation sets includes clean distress
samples (no noise added), and the others include dis-
tress samples at 40dB, 20dB, and 10dB respectively.
Note that unlike the other categories that appear in ev-
ery validation set at a mix of SNR(s), all distress audio
samples in a selected validation set are either clean or
have an SNR of 40 or 20 or 10dB.

Also, most importantly, the distress samples are added
to samples from the environmental context and human
speech and not to AWGN noise to achieve the said SNR.
This addition is done in an exhaustive manner. That is,
if there are n distress samples and a total of m samples
of context and human speech, then we get a total of nm
samples of distress each of which is added to one of the
m other sounds at the selected SNR.

The different SNR(s) of distress across different vali-
dation sets simulate the possibly different relative ener-
gies of vocal expression of distress by an individual and
that of the surrounding context as sensed by the phone.
Note that it is almost impossible to get real data for all
possibilities. So we use multiple validation sets to sim-
ulate varied environmental contexts, very quiet (high
distress SNR) to very harsh (low distress SNR).

8. RESULTS
First, we quantify the performance of Speech Filter

and Context Filter over our validation sets using differ-
ent SNR(s) as explained in Section 7. The performance
evaluation motivates our learning framework, which has
Speech Filter and Context Filter in series. Next, having
chosen our learning framework, and a set of desirable
column relaxation and distance threshold, (CR, DT ),
pairs, we evaluate the performance of the framework
on test data collected by volunteers. This is followed
by quantifying the impact of temporal analysis on the
false alarm rate obtained from volunteer data.

Note that the learning framework categorizes each
input feature vector, which is generated from a 2 sec
audio sample. False alarm rate (FAR) is the percentage
of such feature vectors, amongst the total non-scream
feature vectors, that are wrongly classified as distress.
As we go from the learning framework to friends-in-
the-loop, we will, instead of stating the FAR, state the
average number of posts per hour received by friends-
in-the-loop that are false alarms.

8.1 Validation set evaluation and selection of
the learning framework

Our summary observations are as follows.

1. Both Speech Filter and Context Filter do well in-
dividually when Clean distress audio samples are
used.

2. For an SNR of 40dB and less, Context Filter leads
to very low distress detection rates.

3. Speech Filter achieves high detection rate. How-
ever, the best tradeoff between detection and false
alarm rate is achieved when an audio sample is
processed by Speech Filter and Context Filter in
series. Specifically, every sample is first processed
by Speech Filter and in case Speech Filter classi-
fies the input to belong to the distress category,
the input is processed by Context Filter. The in-
put is declared to be of the distress category only
if Context Filter also classifies it to be distress.

The detection rate and FAR tradeoff(s) achieved are
plotted in Figure 2. Figures 2a, 2b, 2c, and 2d, show
the tradeoff for distress samples that are Clean (no noise
added), have 40dB, 20dB, and 10dB SNR, respectively.
For each SNR we show the tradeoff achieved when only
Speech Filter is used, only Context Filter is used, and
Context Filter follows (is used in series with) Speech Fil-
ter. When only Speech Filter is used the different detec-
tion rate and FAR tradeoff(s) are obtained by varying
the distance threshold DT . When only Context Filter
is used, the different tradeoff(s) are achieved by varying
the column relaxation CR.

As is seen in Figure 2a, there is not much to choose
between the three possibilities when the distress sam-
ples are clean. For all other SNR(s) Speech Filter alone
achieves much higher detection rates than Context Fil-
ter alone. However, note that the best tradeoff be-
tween detection rate and FAR is obtained when using
the two In Series. For example, consider SNR=40dB
(Figure 2b). At about a false alarm rate of 1%, using
In Series can give a detection rate of 5% more than us-
ing Speech Filter alone. Larger gains in detection rate
are seen for 20dB SNR (Figure 2c). At SNR=10dB,
detection rate is very low. However, for all the SNR(s),
the choice of In Series leads to detection rate and FAR
tradeoff points that are to the left and top of the points
obtained when using Speech Filter and Context Filter
alone. Thus, In Series gives a better tradeoff.

8.2 Choosing a set of desirable points of oper-
ation from DT × CR

Each of the tradeoff(s) corresponding to In Series in
Figure 2 is obtained by a specific setting of DT and CR.
We now choose pairs of values such that a detection rate
of about 80% is achieved at a FAR of about 1%. For

6



0 1 2 3 4 5 6 7 8 9 10
92

94

96

98

100

False Alarm Rate

S
c
re

a
m

 D
e

te
c
ti
o

n
 R

a
te

No Sounds from Context Added

 

 

Speech Filter Alone

Context Filter Alone
In Series

(a) Clean scream samples.
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(b) SNR = 40dB.
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(c) SNR = 20dB.
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(d) SNR = 10dB.

Figure 2: The false alarm rate and detection rate tradeoff curves obtained when using each of Speech Filter and
Context Filter alone, and In Series. The curves were plotted for distress samples and context related samples
in the validation set for distress sample SNR(s) of 10, 20, 40dB, and the case (Clean) when no sounds from the
environmental context are added to the distress samples.

10dB, a detection rate of 80% cannot be achieved at a
FAR of 1%. We select two points P5 and P6, where P5

achieves a detection rate of about 80% at a high FAR
of about 6% and P6 achieves a detection rate of 50%
at FAR of about 1%. The selected pairs are shown in
Table 2. The selections for the Clean distress samples
are able to achieve FAR of about 1% even at very high
detection rates.

8.3 Evaluation over volunteer data
Our evaluation shows that the false alarm rate is

brought down to an average of about one message every
three hours using the learning framework and temporal
analysis. Assuming that an average individual spends
about 12 hours every day outside home, 3 to 4 messages
or posts to friends-in-the-loop are the overhead that AA

creates in lieu for always staying alert to distress.
Note that Table 2 lists the FAR and detection rate as

achieved for the validation data set. We now evaluate
performance over the test data set, which consists of
data collected by volunteers’ phones as they went about

Clean Clean 40dB 20dB 10dB 10dB

Name P1 P2 P3 P4 P5 P6

DT 4.0 3.7 2.2 1.9 0.4 2.2
CR 3.0 2.0 4 5.0 7.0 5.0

FAR 1.29 0.99 1.02 1.35 5.71 1.29
DR 96.33 95.41 95.03 79.30 79.62 50.81

Table 2: Selected points of operation P1, . . . , P5. For
each point we list the value of the distance threshold
DT , the column relaxation CR, and the achieved FAR
and detection rate. These points are used to evaluate
the FAR obtained from volunteer data. We choose two
sets of values for Clean and 10dB.

their daily routine. The test data set does not include
any real screams.

We evaluate the FAR over volunteer data for the
points of operation P1 to P6. The FAR is plotted for
each volunteer in Figure 3. The FAR for the six points
of operation is stacked over one another. For all volun-
teers, the settings P1 and P2 give very small FAR. P3
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Figure 3: FAR experienced by volunteers for the se-
lected points of operation P1 to P6.

works well for some of the volunteers. P5 leads to really
large false alarm rates. Note that the variation of FAR
with the point of operation is not surprising (also see
discussion in Section 11) and was also seen in Figure 2.
The higher FAR, for example when using P5, is because
the chosen detection rate and FAR tradeoff leads to a
very high detection rate, however at a very large FAR.
At 40dB SNR, P5 leads to a detection rate of 98.62%
and a FAR of 5.72% when using In Series. Instead,
when P3 is selected we get a detection rate of 95.03%
and FAR of 1.02%.

For all further evaluation of volunteer data we assume
the point of operation to be P1. The median FAR over
all volunteers for this choice is 0.45% and the mean FAR
is 0.8978%. The median and mean drop to 0.58% and
0.388% when we exclude volunteer 14. As is seen in
Figure 3, volunteer 14 generates a large percentage of
false alarms, for point of operation P1, in comparison to
other users. Our investigation of volunteer 14’s record-
ings revealed music and television to be a big reason for
the high FAR. On the flip side, this also leads to the
false alarms being contiguous in time. Temporal analy-
sis brings about a big reduction in the number of false
alarms that are forwarded to friend(s)-in-the-loop. Row
6 of Table 3 shows the reduction for volunteer 14. A to-
tal of 1194 alarms generated by the learning framework
are reduced to merely 11.

8.4 Reduction in FAR on temporal analysis
Table 3 shows the number of false alarms generated

per volunteer assuming contiguous alarm rejection with
timeout values of 30, and 60 minutes respectively. If
we consider volunteers for whom more than 10 hours of
data was recorded, on an average we see a false alarm
every 2.5 and 3 hours for timeout settings of 30 min and
60 min respectively.

9. FRIENDS IN THE LOOP
We chose 3 facebook pages and 2 groups to evaluate

the delay between a new post and the first few responses

False alarms sent to friends-in-loop

Tot. Hours No Timeout 30 min 60 min

57.28 304 20 18
39.10 55 3 3
19.27 466 8 7
18.49 25 3 3
18.33 7 2 2
13.51 1197 14 11
11.09 49 8 6
3.15 12 2 2
0.97 30 3 2
0.69 35 1 1

Table 3: Each row corresponds to a different volun-
teer. The first column is the total number of hours of
recorded audio from each of the volunteers. The second
columns lists the number of false alarms sent to friends-
in-the-loop assuming that we do not exploit the time
contiguous nature of the false alarms. Third and fourth
column show the number of forwarded false alarms for
timeout values of 30 and 60 minutes, respectively.

(comments) to it. This delay is likely to be a good in-
dicator of delays that AA will suffer due to the require-
ment that friends-in-the-loop verify an alarm to be a
genuine alarm before it is forwarded to law enforcement.
Since the humans that constitute the friends-in-the-loop
for any individual is likely to be a small community, the
worst case delays may be up to 15 minutes. Note that
these delays may reduce in case a directed message is
sent to a priori selected group of people, for example,
the family of the individual likely to be in distress.

We polled the most recent 300 posts from each page.
From each post we obtained the earliest 5 comments.
Only posts with at least 1 comment were considered for
this experiment. For each post and each of the 5 ear-
liest comments on it, we calculate the difference in the
time of posting of the post and the comment. Table 4
summarizes the median of the obtained time differences.
Page 3 and page 4 have a very limited number of mem-
bers and we see median time delays of about 15 minutes
between a post and the very first comment on it.

10. SMARTPHONE IMPLEMENTATION AND
ENERGY CONSIDERATIONS

Figure 4 summarizes the implementation of the AA

Android application. We used the CoMIRVA [32] li-
brary for MFCC computation. The library libsvm [11]
was used for SVM based classification. We now enu-
merate the challenges faced and the solutions we have
implemented.

Buffer overflow: There are two Android libraries,
AudioRecord and MediaRecorder, which allow record-
ing audio from the microphone. MediaRecorder only
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Comment Pg. 1 Pg. 2 Pg. 3 Pg. 4 Pg. 5

1 1.233 0.892 15.52 14.48 2.2

2 1.933 1.325 42.71 16.57 2.917

3 2.817 1.683 80.13 22.02 3.833

4 3.65 2.025 112.6 39.43 4.542

5 4.742 2.517 124.2 54.47 5.333

Table 4: For each page, we tabulate the median time
between a post and the first to the fifth comment on
it. Page 1 has 320000 followers. Page 2 has 3.6 million
followers. Page 5 has 68000 followers, page 3 has 622
members, and page 4 has a mere 79 members.

Figure 4: The different functional blocks of the AA An-
droid application.

provides audio in compressed format. As we need to
acquire raw PCM data, we used AudioRecord. The
AudioRecord API uses the polling approach to acquire
PCM frames from the audio buffer, which overflows
quickly if not polled. We had to ensure that the thread
we created for recording worked in tandem with Au-
dioRecord’s thread that polls the buffer so as to ensure
that all recorded audio is saved.

Multi-core implementation: On phones that have
multiple cores, we realized that the recording thread
was slower than the polling thread since the threads
were running on different cores. This led to creation of
null frames, which would get saved as a series of 0s and
hence corrupt the recording. To make sure these null
frames do not get saved, we put each frame through a
test to check for null frames.

User privacy: We did not want any audio file saved
by the application to show up in the media player. Note
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Figure 5: Energy consumed for recording at different
sampling rates, by three different phones.

that the application may store about 5MB of audio ev-
ery minute, and the file will need to be saved on the
phone’s external storage. To hide the audio file we use
a combination of three techniques. We do not insert the
header into the file, we place a “nomedia” marker file in
the folder, and make the folder a hidden system folder.

10.1 Energy consumption
We measured the energy consumption of recording

audio from the microphone and classification using SVM
on phone. The experiment was conducted on three
Android phones, namely, Samsung Galaxy Y (Android
2.3.6), Sony Xperia SP (Android 4.1.2) and Micromax
Canvas HD (Android 4.2.1). Amongst these phones,
Galaxy Y is a 2011 model and has low cost hardware,
whereas the other two are 2013 models with fairly pow-
erful hardware. The experiments were conducted in two
stages, one for recording and the other for classification
using libsvm.

Figure 5 summarizes the energy consumption dur-
ing recording. The more powerful phones with newer
versions of Android tend to perform better in terms of
energy consumption. The sample rate at which the au-
dio was recorded did not create much difference in the
energy consumed on Xperia and Micromax. On Galaxy
Y it created a huge difference.

The figure does not show the results of the classifica-
tion experiment. There wasn’t a significant difference
in terms of energy consumption and classification took
merely 3− 5% battery over 10 hours, making classifica-
tion using libsvm of not much concern with respect to
energy consumption. While recording is energy inten-
sive new phones are more optimized for it. In fact, op-
timizations that improve the audio potential of smart-
phones are likely to arrive sooner than later.

11. LIMITATIONS AND A FEW OBSERVA-
TIONS

On the false alarms: An average of a post every
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three hours can soon become a nuisance, especially if the
posts are broadcast to a large community. Also, because
almost all of these posts will be false alarms. One may
instead choose to send the posts to a smaller group of
known people, for example, parents or a spouse. This
can lead to privacy concerns, however.

It is worth investigating the ability of the phone to
guess the environmental context in which an alarm was
raised. Certain contexts may then be treated as safe and
alarms raised may be ignored. Of course, the user of AA

may be nudged and only in case of a previously decided
response from the user, the alarm can be discarded by
AA.

Throughout this work we have only used inputs from
the microphone to detect distress. Inputs from other
sensors like accelerometer can help better gauge context
and reduce false alarms. GPS or WiFi based location
information together with audio fingerprints can help
reject repeat false alarms that are tied to a particular
location. An example location is a children’s park where
screaming children lead AA to raise false alarms with
certainty.

There are other scenarios too. They are not very
likely to occur, however, at least not on a daily ba-
sis. The framework cannot distinguish between a happy
scream (no cause for alarm) and a sad scream, at least
not without involving friends-in-the-loop. It cannot cur-
rently distinguish between a scream on TV and a real
human scream.

Why choose facebook: We chose facebook to eval-
uate the delays that friends-in-the-loop may lead to.
Chat messengers like WhatsApp will likely lead to smaller
delays. However, unlike facebook, we do not have ac-
cess to API(s) needed to get the required information.
Also, our calculations of delays assume that people will
over time respond to posts made by AA.

12. RELATED WORK
In this section, we summarize related works on dis-

tress detection using audio on mobile phones and wear-
able devices. We will also discuss a few alert dissemi-
nation techniques.

12.1 Distress detection
Distress detection from atypical events, using audio

and video information, is found in [25, 36, 37]. Works
that only use audio to identify normal and abnormal
events include [13, 18]. For detection of distress, scream
is chosen expression of distress [18, 31, 35].

[18] uses the categories of scream, cry, laugh, ap-
plause, clap, knock, and glass break to train SVM and
GMM with the aim of distinguishing between normal
and abnormal events in a home setting. They use a
Linux based system (pentium Mobile CPU 2G, 400M
front Bus) and a microphone array.

[35] identifies screams and gunshots using a micro-
phone array and also localizes the abnormal audio event
by pointing a camera to the exact location of the event
using the Time Difference of Arrival technique. Two
parallel GMM(s) were trained to discriminate noise from
scream and noise from gunshot. They used a sophisti-
cated feature extraction and selection method to include
MFCC along with periodicity, spectral slope and cen-
troid. [31] also detects gunshot, explosion, and scream in
a metro and subway environment. The above works pro-
vided a good motivation for using scream as a category
of interest for our distress detection framework. They
discriminated between threatening and non-threatening
situations using GMM and HMM. These works show
high accuracy for scream detection. However, they have
use a dedicated and static hardware for their framework.
Also, unlike AA they cater to very select environments.

In our work, we carry out a thorough evaluation of
scream detection across varied environmental context
and different degrees of sounds from the environment.
All related works have considered a specific contexts [15,
22, 23, 29, 31].

Related works that have used a multi-stage frame-
work include [13, 15, 22, 29, 30, 31]. These systems
have limited context information, whereas we consider
a wide range of possible contexts.

[28] attempts to identify the emotion of the user us-
ing GMM and HMM. Emotion Recognition [19, 20, 24,
33] is used to classify six basic type of emotions sug-
gested by Paul Ekman [17]. The emotion recognition
work has also been used in fear detection [13]. Their
database [14] contains abnormal, non-verbal, and dan-
gerous situations. It was used to make a text-and-
speaker-independent fear detection framework. Their
accuracy is not high, which is not useful for a system like
AA. Emotion recognition is found in other applications
as well [9], but these work within a specific context.

12.2 Context detection
[12] emphasizes the need of only audio based systems

instead of both video and audio. But the performance
shown was limited to non-speech and non-music data,
hence a real time deployment of this work is still a
question. People have used Audio in Human Activ-
ity recognition tasks [22] to recognize illegal activities
like trespassing and hunting. The accuracy is very low
in presence of noise. [30] uses wavelet transform at its
first stage of classification and has considered many con-
text audios. They used a dedicated hardware, however.
Audio fingerprints have been used in elderly care to de-
tect falls using mobile and wearable devices [16, 26].
[26] uses many sensors along with a microphone on a
wearable device to identify depression using silence and
speech periods. [34] uses a microphone and other sen-
sors to adapt to user context.
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12.3 Distress Detection using mobile phones
To our knowledge, there is no work on audio based

automated distress detection using mobile phones. Re-
lated works on distress detection using mobile phones
provide a manual trigger to the user which needs to
be pressed when the user is in distress [2, 3, 4, 6]. [2]
provides an alert dissemination framework which shows
alerts from recent past so that a user is warned in ad-
vance about a harmful place.

13. CONCLUSIONS
We proposed an entirely smartphone audio based 24×

7 real time distress detection system. We provided an
outline of the implementation of the application and
a thorough evaluation of its suitability to execute on a
smartphone. We proposed a novel framework, that uses
two stage learning, temporal information, and ability of
humans to reject false alarms based on audio clips to
achieve a high distress detection rate and a reasonable
false alarm rate. Extensive evaluation on many hours
of volunteer data was used to show that the overheads
due to false alarm rate are on an average equivalent to
a facebook post by the user of AA every 3-4 hours.
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