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1 Introduction

With widespread use of social media, it has become a common practice for people to express online
opinion on platforms such as Twitter, Facebook, Instagram etc. A common problem that arises in
such an area is to automatically detect what stance do these millions of unlabelled opinions hold
which is extremely relevant for information retrieval, text summarizing and as an added analytical tool
to sentiment analysis. At present, many media organizations conduct online polls to gauge people’s
opinion. However such poll’s reach a limited audience and the results are often biased because the
nature in which the poll question is posed to users can significantly effect their opinion. In contrast,
automatically detecting stance from text posted on social media platforms will offer an unbiased and
more accurate overview of stance from a large number of users.

Since stance detection is a challenging and an interesting problem to solve, it was officially released
as part of the SemEval 2016 Task #6 [13]. An official database1 of 4870 annotated English tweets
was also released for 6 targets. However the few hundred available examples per topic are insufficient
to train classifiers that can accurately detect stance for various topics. Thus in our work, we formulate
the problem of stance detection as a semi-supervised learning task wherein we use a database of
unlabelled tweets for each target as well as labelled tweets from the SemEval 2016 dataset [13].
We hope that the use of unlabelled data aids in learning better tweet embeddings that is essential
for training better classifiers. For the purpose of this project, we use ’Donald Trump’ as the target
topic. We create an unlabelled dataset of ’Donald Trump’ tweets which were collected by pooling for
hashtags #DonaldTrump and #trump2016. In addition we have our labelled dataset from the SemEval
2016 Dataset that contains annotated stance tweets for the target ’Donald Trump’. Our methodology
is described in Section 3 and results are evaluated in Section 5. Section 4 describes the embedding
methods that we explored and developed ind detail.

2 Related Work

Since SemEval 2016, stance detection on Tweets has received more attention in the research commu-
nity. The baseline approach developed by the organizers of the SemEval 2016 Task #6 [13] consists
of multiple SVM classifiers, one for each target, which are trained on word n-grams [21] of the
labelled dataset. Several approaches make use of unlabelled data together with labelled data for stance
detection on Tweets. They use corpus of unlabelled tweets obtained from Twitter’s API [22, 1, 7]. In
[22], the large corpus of unlabelled tweets (related to given targets) was used to identify phrases using
’word2phrase’ [10] and train skip-gram [21] embeddings which were then used to train multiple
RNNs for each target. ’word2vec’ [11] models trained on external datasets such as Google News was
also used in [20]. Overall, most works have used word embedding vectors [22, 20, 18, 8] and n-grams
[4, 7, 12, 3] while some have also used sentiment analysis features like sentiment lexicons [15]. In [7],
the authors created a dictionary of hashtags from additional tweets that indicate a particular stance
which was then used to override the classifier decision. Some approaches use weakly supervised
techniques to automatically create a larger labelled dataset by using Twitter’s API [12, 3, 19] and then
do supervised learning on the larger dataset. SVM is the most popular choice for classifier in most
approaches [4, 15, 3, 12]. Some have also used RNNs [22] or CNNs [20] for the task. The authors

1http://www.saifmohammad.com/WebPages/StanceDataset.htm



in [1] use an autoencoder with logistic regression for classification. In some works, an ensemble of
classifiers [18, 8] has also been used.

3 Dataset and Methodology

3.1 Dataset and Pre-Processing

The following table summarizes our dataset. We perform data upsampling to balance our labelled
dataset. Since tweets have some unique properties, the preprocessing forms an important step.
Specifically, we perform case correction, stop-word/special characters removal, lemmatization, spell
check and slang word substitution to clean the data and make it usable. Finally, we split the data
70-30 as train-test.

Unlabeled Tweets 50000
Labeled Tweets 707

Labeled Tweets Against Favor None
Before Upsampling 299 260 148
After Upsampling 299 299 299

Balanced Labeled Tweets 897
Train Split 627
Test Split 270

Table 1: Dataset splits
3.2 Feature Extraction

Figure 1: Above: Training Pipeline, Below: Testing Pipeline

Taking inspiration from the prior work, in this project we follow a linear sequential pipeline as
depicted in figure 1. Our approach can be bucketed as a heuristic-based semi-supervised learning
approach where we explicitly first use the unlabelled data to generate an informed embedding space
and then project the labelled data on to this space. The expectation is that, a coherent and informed
embedding will allow a classifier to classify data more accurately. At the same time it is important to
have these embeddings interpretable so that the approach becomes verifiable and more informative.
Exploring how to generate coherent and interpretable embeddings is the core focus of our project. We
explore Latent Dirichilet Allocation (LDA) and Para2Vec as our baseline approaches as they are the
go-to approaches for generating embeddings in text analytics. We later explore LDA2Vec [14] as the
main focus of our project and try to combine the benefits and trade-offs provided by our baselines.

3.3 Supervised Learning

After computing the embedding for our data using feature extraction, we use the labelled data to
train a supervised learning based classifier. We use a multi-class SVM classifier for this purpose. To
find the best hyper-parameters for the classifier, we do a grid search to select the best parameters
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namely the type of kernel to be used and the value of regularization parameter C. After grid search,
the classifier with the best 5-fold cross validation accuracy is selected.

4 Embedding Methods

4.1 Topic Modelling: LDA

In order to understand LDA, we first present pLSA (probabilistic Latent Semantic Analysis) [6] that
discovers a set of topics related to the collection of documents and its constituent words by factorizing
a term-document matrix in a probabilistic manner. Given a document d in a collection of documents
D i.e. d ∈ D, a topic t is present with probability p(t|d). Similarly, given a topic t from a collection
of topics T i.e. t ∈ T , a word w is present with probability p(w|t). We are given a vocabulary of
words V i.e. w ∈ V . The joint probability distribution for pLSA can then be expressed as -

P (D,W ) = P (W |T )P (T |D)P (D) (1)

Provided the number of topics to be extracted i.e. |T |, we need to find the parameters for the
distributions P (T |D) and P (W |T ). These distributions are assumed to be multinomial and modelled
using an Expectation-Maximization approach (EM). In the E-step we estimate the distribution
P (t|d,w), while in the maximization step we update our estimates of P (t|d) and P (w|t). The
number of parameters is |T ||D|+ |V ||T |. The above process ultimately provides us with P (T |D)
i.e. given a document we obtain its topic distribution and use it as a feature representation.

An obvious drawback of pLSA are that we can not assign probabilities to new documents as P (D)
is not explicitly modelled. Latent Dirichilet Allocation (LDA)[2] generalizes pLSA by changing
the fixed distribution P (D) to a conjucate prior (dirichilet) for the existing multinomial distribution
P (T |D). The parameter that defines this conjucate prior distribution i.e. θ is defined by a vector
α which is of length |T |. Additionally, a conjucate prior for the existing multinomial distribution
P (W |T ) is defined as γ and defined by a vector β of length |W |. To make our life a little easier
often the vectors α and β are assumed to have the same value for all their vector components and
reduce to single value parameters. The parameters α and β are treated as hyperparameters and it is an
established convention for textual data to set them to 50/|T | and 0.01 respectively [17]. Our final
joint probability distribution LDA infers is expressed as -

P (θ, γ, T |W,α, β) (2)

Instead of an EM approach, the most common way of optimizing for the parameters (θ, γ, T ) above
is through using Gibbs Sampling, a specific form of MCMC (Markov-Chain Monte-Carlo) [5]. Gibbs
sampling simulates high-dimensional distribution by sampling on lower-dimensional subsets each
independently conditioned on the value of all others. We choose to evaluate LDA as one of our
baseline methods and implement it using Mallet [9], a computationally optimized implementation of
Gibbs Sampling.

To summarize, LDA will provide us with |T | topics which are each essentially a probability
distribution over |W | words. For example if we have 2 topics over 4 words -

t1 = [donald : 0.3, trump : 0.6,mexican : 0.1, wall : 0.0] (3)

t2 = [donald : 0.0, trump : 0.2,mexican : 0.5, wall : 0.3] (4)

A tweet is then expressed as a probability distribution over these topics which forms our final
feature vector representation.

donald trump on the wall = [t1 : 0.8, t2 : 0.2] (5)

During testing, for a new tweet, each word is assigned a topic distribution using -

P (ti|θ, γ, wj) = P (wj |γ, ti)× P (ti|θ) (6)

where i is a topic id and j is the word index in the new document. Once we have a per word - topic
distribution, we can easily calculate the documents topic distribution by aggregating it.
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4.2 Feature Embedding: Para2Vec

Para2Vec is an interesting addition to the Word2Vec [11] approach which is based on a feed-forward
neural network architecture with a single hidden layer. Instead of finding the individual embeddings
of each word and averaging them, Para2Vec adds an additional Paragraph vector in the input layer
during the training phase that is unique to the paragraph. The training continues as usual, but upon
convergence - the paragraph vector holds a numeric representation of the document. This acts as the
embedding for a paragraph. In our implementation we use the Gensim library [16] to implement
Doc2Vec ( Para2Vec) on our dataset.

Figure 2: Left: Word2Vec Architecture , Right: Para2Vec Architecture. The colored blocks represent
the context window. Green color signifies the pivot words, while yellow signifies the target word in
the window.

Both, Word2Vec and Para2Vec approaches are summarized in Figure 2. We use the following
notation -

• a document/paragraph dk is a sequence of words {~wk0, ~wk1... ~wkn}, ~wkj ∈Wk∀j ∈ [1, n],
where n is the the number of words in the document at index k.
• a context window Ck is a sequential subset of dk of size |C| = v. Every word in the context

window is a pivot word ~wkj (j ∈ [1, v − 1]) besides one which is a target word indexed by i
and denoted as ~wik. This context window slides across a document with a fixed stride s in
each iteration.

• each word ~w is represented as a one-hot vector over the entire vocabulary of the complete
corpus i.e ~w ∈ R|W |.

• a paragraph vector is also a one-hot vector i.e. d ∈ R|corpus|.
• the number of hidden units in the only hidden layer h is |h|. We can hence name the matrix

between the input layer and the hidden layer as M1 ∈ R|W |×|h| and the matrix between the
hidden layer and the output layer as M2 ∈ R|h|×|W |.

In Word2Vec, for a given context window Ck we compute the values in the hidden layer as -

~h =
1

v − 1

∑
j∈C,j 6=i

M1 ~wkj (7)

The values in the output layer are modelled as a probability distribution by passing them through a
softmax layer -

~o = ~hM2 (8)
where ~o ∈ R|W | and ~of represents the f th scalar element of the vector.

P (~of |Ck) =
exp(~of )∑

e∈1,..,|W | exp(~oe)
(9)

The loss function is computed as the cross-entropy loss, where i is the index of the target word.

loss = −
∑

f∈1,..,|W |

~wkf log
exp(~of )∑

e∈1,..,|W | exp(~oe)
(10)
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loss = − log
exp(~oi)∑

e∈1,..,|W | exp(~oe)
(11)

loss = −~oi + log
∑

e∈1,..,|W |

exp(~oe) (12)

A problem with this loss is that computing the gradient computation and update for a large
vocabulary size is computationally expensive. To deal with this issue instead of computing the loss
for all the non-target words, we do so only for a subset N . This is known as the negative sampling
loss and makes Word2Vec learning more scalable.

loss = −~oi + log
∑
e∈N

exp(~oe) (13)

As we can observe in Figure 2, the subtle change made to change Word2Vec into Para2Vec is the
inclusion of a document vector to the input nodes. In the abstract sense there is no difference between
a word vector and a document vector. A document vector p adds another matrix that is learned at
the end of the training M3 ∈ R|Corpus|×|h|. At the time of training the algorithm considers the pivot
and the target pairs as the context in Word2Vec, while in Para2Vec the algorithm considers the pivot,
target and document triples as the context.

In para2vec the document embeddings are obtained as the rows of the M3 matrix. For a new
document obtained during the time of testing, we just retrain the model with the words present in the
new document by keeping M1 and M2 matrices frozen. The embedding obtained is a h-dimensional
vector. While the embeddings generated by these couple of methods reflect meaningful properties
as a collection, individually the vector generated is not interpretable. As an example, a Para2Vec
embedding of the toy tweet mentioned in the previous section would be something like -

donald trump on the wall = [−0.4, 0.5, ...5, 4] (14)

4.3 LDA2Vec - A Hybrid Approach

Figure 3: LDA2Vec Architecture

Looking back at the baseline methods we see that Word2Vec is capable at local assessment i.e.
given a word it can predict it’s neighbours. Para2Vec adds a global context to this inference and is
able to capture both the local sequential context among words and their global relationship in a single
embedding. LDA too captures a global context but loses out the sequential nature of the words. This
maybe a reason that leads to Para2Vec giving better embeddings. But since LDA provides us with
interpretable embeddings (distribution over topics which are essential a ranking of words) it has its
own benefits. Taking motivation from the baseline approaches, in this project we explore if we can
get both accuracy and interpretability in our feature embeddings. For this we explore LDA2Vec [14],
a hybrid approach largely based off of the previously described Para2Vec architecture. The algorithm
can be summarized as follows by referencing the annotated components in figure 3 -
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1. (a) A sliding window runs across the input text belonging to document k (k ∈ [1, |corpus|])
and a pivot word is selected, indexed by j in this case, and passed to a linear layer of hidden
units. The output of the layer is the |h| dimensional word vector wkj . We use the same
convention of a context window Ck explained in the previous section.

2. (b) The number of topics is denoted by q. A q-dimensional document weight vector is
randomly initialized and converted to a probability distribution by passing it through a
softmax function. For a document dk we essentially get a q-dimensional vector of the form
[pk1...pkq]

3. Inspired by LDA, the vector is sparsified by using a dirichilet loss function as mentioned
below. The strength of this component is controlled by a tuning parameter λ. The sparsity
of the vector is controlled by α (more sparse for α < 1).

Ldir
k = λ

q∑
x=1

(α− 1) log pkx (15)

4. (c) A topic matrix T ∈ Rq×|h| is initialized with Vanilla LDA and a document vector(dk) is
created using a weighted sum of the |h| dimensional topic vectors ~t0...~tq which form the
rows of our topic matrix.

~dk = pk1.~t1 + ...+ pkq.~tq, 0 ≤ pkq ≤ 1 (16)

5. (d) A context vector is created by taking the sum of the word vector and the document
vector.

~cj = ~wkj + ~dk (17)

6. The final loss function is a negative sampling loss function (same as equation 13) as
described below where l is the index of a fixed number of random negative samples used.

Lneg
ij = log σ(~cj , ~wi) +

∑
l∈N

log σ(−~cj , ~wl) (18)

loss = Ldir
k +

∑
ij

Lneg
ij (19)

After training the model is able to generate document vectors for each tweet in the dataset ~dk. The
special thing about this representation is that it is a weighted sum of the topic vectors [~t1..~tq] where
each topic vector is embedded in the same space as each word in the corpus. Thus, to obtain the
words that constitute a topic, we can simply calculates its nearest word neighbours in the embedded
space.

5 Results and Analysis

5.1 Using Unlabelled Data

From the evaluation of our baseline methods done prior to the mid-semester checkpoint we drew
some interesting conclusions -

1. Table 2 shows the hyper-parameters for LDA, Para2Vec and SVM (with and without
unlabelled data) that were learnt through grid-search

2. One of the most important insights was that using the unlabelled data actually did improve
both our baseline methods. This is evident in the accuracy plots and confusion matrices of
figure 4 and also on seeing the ROC curve in figure 5.

3. In the same graphs, we also observe that Para2Vec consistently performs better than LDA.
On visualizing the T-SNE plots for both the embeddings in figure 5, we can observe that the
para2vec embedding is much more structured and uniform as compared to LDA. Although
we cannot make any conclusive remarks from the plots, we can observe a small concentration
of "NONE" more prominent in the Para2Vec embedding.
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4. We also observe that although the embeddings created by Para2Vec seem more coherent
than the ones created by LDA (as they lead to a better accuracy on our test set), it is much
more difficult to make sense of individual embedding. LDA, although has a lower accuracy,
an individual embedding is interpretable as it represents a probability distribution over topics
which are themselves a collection of words.

Figure 4: Comparison of training/test F1 scores and training/test accuracy (top) and confusion
matrices (bottom)

(a) LDA (44 Topics) (b) Para2Vec (100d) (c) ROC Curve

Figure 5: (a), (b) Comparison of T-SNE representations of labelled data using the two representations.
(c) ROC Curve for SVM With and Without Unlabelled Data.

LDA SVM
With Unlabelled |T | = 44 C = 1000, kernel = linear

Without Unlabelled |T | = 44 C = 1000, kernel = linear
Para2Vec SVM

With Unlabelled |h| = 50 C = 1000, kernel = RBF
Without Unlabelled |h| = 50 C = 1000, kernel = linear
Table 2: Tuned hyper-parameters for LDA, Para2Vec and SVM

5.2 LDA2Vec

After implementing the hybrid LDA2Vec approach we could draw the following observations :

1. Figure 6 shows loss progression while training our LDA2Vec model on PyTorch. We train
for 100 epochs with a 1024 documents in each batch and as we can see the losses decrease
progressively with training. The negative sampling loss falls more steeply while Dirichlet
loss falls more linearly.

2. Table 3 shows the hyper-parameters that we tuned for LDA2Vec. It also shows hyper-
parameters for the best SVM classifier found using grid search.
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3. Figure 7 shows accuracy comparison between LDA, LDA2Vec and Para2Vec. As expected
we are able to get higher accuracy as compared to LDA (approximately +5% gain) but
accuracies are lower as compared to Para2Vec (approximately -8% loss)

4. We do a qualitative analysis between 3 topics and their top 10 words generated by LDA
and LDA2Vec. As we can see from Figure 8 the quality of topics generated by LDA2Vec is
comparable to LDA. We can conclude from this analysis that there is no loss of topic quality
as we go from LDA to LDA2Vec.

(a) Neg. Sampling Loss
(
∑

ij L
neg
ij ) (b) Dirichlet Loss (Ldir

k )
(c) Total Loss (Ldir

k +∑
ij L

neg
ij )

Figure 6: Loss Progression during LDA2Vec training

LDA2Vec SVM
With Unlabelled |T | = 44, λ = 2000, LR = 5× 103, α = 1

44 , |h| = 100 C = 10, kernel = RBF
Table 3: Tuned hyper-parameters for LDA2Vec and SVM

LDA-SVM LDA2Vec-SVM Para2Vec-SVM
0.0

0.2

0.4

0.6

0.8

1.0
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cu
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cy

Train Accuracy
With Unlabelled

(a) Training accuracy

LDA-SVM LDA2Vec-SVM Para2Vec-SVM
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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cu

ra
cy

Test Accuracy
With Unlabelled

(b) Test accuracy
(c) LDA (d) LDA2Vec

Figure 7: Accuracy and confusion matrices comparison between LDA, LDA2Vec, Para2Vec

Figure 8: Topic comparison between LDA (Left) and LDA2Vec (Right)

5.3 Discussion

From the results above we can see that LDA2Vec proves to be a good middle ground algorithm
between LDA and Para2Vec. As we make this claim, we make sure our experiments have remained
free from the biases taught to us in the last few classes. We choose the best implementation of
LDA and Para2Vec around and perform a thorough grid search to get their best parameters thereby
avoiding the Tuning Until Best bias. Since we do not impose any specific constraints to our problem,
we consciously try to avoid the confirmation bias by reporting the results as is and incorporating
appropriate error bounds in the training plots.
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