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ABSTRACT
�e data generated on social media sites continues to grow at an
increasing rate with more than 36% of tweets containing images
making the dominance of multimedia content evidently visible. �is
massive user generated content has become a re�ection of world
events. In order to enhance the ability and e�ectiveness to consume
this plethora of data, summarization of these events is needed.
However, very few studies have exploited the images a�ached with
social media events to summarize them using “mid-level visual
elements”. �ese are the entities which are both representative and
discriminative to the target dataset besides being human-readable
and hence more informative.

In this paper we propose a methodology for visual event sum-
marization by extracting mid-level visual elements from images
associated with social media events on Twi�er (#VisualHashtags).
�e key research question is Which elements can visually capture the
essence of a viral event?, hence explain its virality, and summarize
it. Compared to the existing approaches of visual event summariza-
tion on social media data, we aim to discover #VisualHashtags, i.e.,
meaningful patches that can become the visual analog of a regular
text hashtag that Twi�er generates. Our algorithm incorporates a
multi-stage �ltering process and social popularity based ranking to
discover mid-level visual elements, which overcomes the challenges
faced by direct application of the existing methods.

We evaluate our approach on a recently collected social media
event dataset, comprising of 20,084 images. We evaluate the quality
of #VisualHashtags extracted by conducting a user-centered evalu-
ation where users are asked to rate the relevance of the resultant
patches w.r.t. the event and the quality of the patch in terms of
how meaningful it is. We also do a quantitative evaluation on the
results. We show a high search space reduction of 93% in images
and 99% in patches a�er summarization. Further, we get a 83% of
purity in the resultant patches with a data coverage of 18%.
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Figure 1: Highlighted in the image is a curated #VisualHash-
tag for the Euro2016 textual hashtag.

1 INTRODUCTION
Microblogging platforms, are widely used as a powerful medium
to connect people during real-world events such as sports, poli-
tics, crisis situations, and so on. During these events users express
their views on these platforms by posting textual and multimedia
content. �is data bolsters the opportunity for researchers and com-
panies to analyze it, with the goal of understanding public opinion;
tracking what’s signi�cant and most liked by users; understand-
ing what’s trending, etc. [4]. But the paramount size of this data
raises challenges in its analysis and hence arises the need for data
summarization, to obtain a compact description of the data.

Most of the existing summarization approaches focus more on
the textual content as compared to a signi�cant source of informa-
tion: the multimedia content [1, 5, 19, 20]. Event summarization
using visual archives has multiple applications; it reduces the size of



the corpus, increases the ability to be�er analyze and interpret the
data, and guides the stakeholders to the interesting aspects of the
data quickly. Images can convey much more information about a
speci�c moment of an event as compared to text, which is typically
short and is poorly wri�en in multiple languages while images
are naturally language independent and easier to understand [12].
Also, in the duration that a user spends to understand the gist of
an image, one can read only one to four words [7].

However, new opportunities also bring along new challenges
with itself. Some major challenges posed by exploiting social media
images are (a) uncertain quality: images are posted without any
quality guarantees, (b) irrelevant content: signi�cant number of
images (such as memes and screenshots) are irrelevant which adds
noise to the content, and (c) duplicity: reposted and modi�ed images
using image processing techniques. Recent advances in vision make
the domain highly conducive to bridge this gap and researchers
have used visual content like images to summarize social media
events [3, 4, 12, 18]. All of these studies summarize the social media
events by either using images with text or images alone. To the
best of our knowledge, mid-level visual elements have not been
deeply explored for summarizing social media events.

�e discovery of these mid-level visual elements is important
as they cover the signi�cant aspects of the images in the corpus of
viral event and hence contribute to understand its virality. Here
”virality” is synonymous with social media popularity in terms
of the event appearing as trending topic. �ese mid-level visual
elements are patches or structured regions of images that occur in
several images with a certain degree of spatial consistency and can
discriminatively summarize the event.

In this paper, we propose a methodology to discover meaning-
ful mid-level visual elements (#VisualHashtags) from social media
events that: (a) can capture its essence, (b) highlight its uniqueness,
and (c) allow e�ective browsing of the event. �ese resultant #Vi-
sualHashtags are expected to more o�en correspond to full objects
of the images. Figure 1, shows a diagrammatic representation of
#VisualHashtags, where we summarize the images from Euro2016.

As mentioned above, one of the major properties of the mid-level
visual elements is their discriminativeness. To account for this prop-
erty in the summarization process, a relevant negative dataset is
created, comprising of events against which this discriminativeness
is required, as proposed by Doersch et al. [10]. In the context of
social media, events falling in the same domain serve this purpose.
Hence, the dataset is divided into two parts: (1) the positive set:
containing images from the event which we want to summarize
(2) the negative set: containing images from the remaining events
belonging to same domain. For example, if we want to summarize
EuroCup, then positive set will contain images from EuroCup and
the negative set will contain images from other events related to
sports domain like Wimbledon, Olympics, etc. We aim to discover
meaningful visual elements, for which we handle duplicate image
detection, detection of text in images, pruning object centralised
patches using Deepmask [15], and then following the discrimina-
tive approach used by [10], select patches which occur frequently
in the target event images and are also unique to that event. Fi-
nally, we rank the extracted patches using the social popularity
score associated with their images and curate the results in form of
#VisualHashtags.

As part of our evaluation and results, we summarize viral events
on Twi�er belonging to the sports and politics domain. Further,
we show temporal analysis of visual summarization of US 2016
presidential elections before and a�er the declaration of results.
Finally, we show a qualitative and quantitative evaluation of the
summarization results.

�e major contributions of this work are:
(1) We propose #VisualHashtags, a novel way to summarize

images from social media events instead of the conven-
tional method of only identifying key-images to represent
the event.

(2) Our approach includes a multi-stage �ltering process which
when coupled with the basic methodology to discover mid-
level visual elements leads to an improvement in coverage
discussed in Section 5.3.

2 LITERATURE REVIEW
A substantial body of work exists in literature on the problem of
textual summarization of social media events. Nichols et al. [14],
summarize sports events on Twi�er by using temporal cues like
spikes in volume to determine key moments within an event. �e
authors �rst apply �ltering techniques to tweets, such as remov-
ing spam, o�-topic and non-English posts, before using a sentence
ranking method to extract relevant sentences from the corpus of
status updates describing each important moment within an event.
In [6], the authors propose a probabilistic model for topic detec-
tion in Twi�er, and use temporal correlation in the data to extract
relevant tweets for summarization. Authors of [22] propose summa-
rization of scheduled events on Twi�er using a two-step approach,
by �rst detecting sub-events through analysis of volume peaks
and then selecting key tweets to describe each sub-event using a
term frequency and Kullback-Leibler divergence weighting scheme.
Chakrabarti et al. [5] propose to summarize event-tweets and give
a solution based on learning the underlying hidden state representa-
tion of the event via Hidden Markov Models. In another study [17]
the authors propose the task of personalized time-aware tweets
summarization, selecting personalized meaningful tweets from a
collection of tweets. �ey use user’s history and collaborative social
in�uences from social circles to infer dynamic probabilistic distri-
butions over interests and topics. Authors in [6], propose a search
and summarization framework to extract relevant representative
tweets from a time-ordered sample of tweets to generate a coherent
and concise summary of an event.

In recent years, the amount of visual data has increased tremen-
dously and computer vision is one of the research �elds that ben-
e�ted from this. Researchers have also focussed on considering
mutimedia content from social media to target problems like event
summarization. In [18], Schinas et al. use both tweets and images
to summarize an event. �ey reveal topics from a set of tweets
as highly connected messages in a graph, whose nodes encode
messages and whose edges encode their similarities. Finally, the
images that best represent the topic are selected based on their
relevance and diversity. Authors of [4] propose a social media
imagery analytics system that processes and organize the images
in more manageable way by removing duplicate, near-duplicate
images and clustering images having similar content. In [12], the



Figure 2: Overall �ow of the approach. (1) First collect images from Twitter and remove duplicate images, use these images for
patch sampling; (2) Applymulti-stage �ltering to prune noisy and non-informative patches; (3) Apply discriminative learning
to discover mid-level visual elements and rank them using social popularity score to �nally present #VisualHashtag.

authors propose image selection and ranking method, which orders
the most relevant images related to the event. To �lter irrelevant
images they eliminate memes, screenshot images and reaction im-
ages from the database and then detect near duplicates among them
to increase diversity. Finally, they apply a ranking method to select
a set of images that describes the event. Authors of [2] propose
a generative probabilistic model-multimodal-LDA (MMLDA), to
discover subtopics from microblogs by exploring the correlations
among di�erent media types. Based on the information achieved
from MMLDA they design a multimedia summarizer to separately
identify representative textual and visual samples and then form a
comprehensive visualized summary.

All these social media event summarization use full images to
describe events but none of them summarize an event by using mid-
level visual elements. Discovery of these mid-level visual elements
has been shown to be useful in various vision tasks like, image
classi�cation, including scene categorization and �ne-grained cate-
gorization [11], action recognition [21]. �ough there are studies
that use mid-level image patches for data mining purposes, they are
evaluated only on data that possess some de�nite pa�erns and do
not consider the case of wild image dataset from social media. For
example, Doersch et al. [10], collect data from Google Street View
of di�erent cities, and aim to automatically �nd the visual patches
like windows, balconies, and street signs, that are most distinctive
for a certain geo-spatial area. Another work by Rematas et al. [16],
where the authors propose data-mining approach for exploring
image collections by interesting pa�erns that use discriminative
patches and further show the results on Pascal VOC and Microso�
COCO datasets. Towards the end, we aim to cover this research
gap of summarizing viral social media events using mid-level visual
elements or as we refer to throughout the paper, �nd meaningful
image patches (in form of #VisualHashtags) that can capture the
essence of a viral event on social media.

3 METHODOLOGY
3.1 Overview
We divide the overall approach in to three major steps (a) selecting
unique images and sampling patches from these unique images (b)

multi-stage �ltering to extract meaningful patches from the sampled
patches, and (c) discovering and ranking mid-level visual elements
using discriminative learning incorporating social popularity score.
Figure 2 shows the overall �ow of the approach.

3.2 Data Collection and Image Selection
As mentioned earlier, in order to carry out the discriminative learn-
ing process, we �rst need to create positive and negative dataset.
For our experiments, we collected data from June, 2016 to Novem-
ber, 2016, related to 7 events, 3 belonging to sports and 3 to politics
category and 1 for doing temporal analysis on US 2016 presidential
elections. To create this dataset, we collected data from Twi�er
using Twi�er’s search API 1, �ltering tweets related to the key-
words that were popular during the event. Further details of data
collection is given in Table 1.

One of the major challenges posed by social media images is
the large number of duplicate content posted. �ough an image
posted multiple times also adds to it’s social importance, processing
same images adds on to the computational complexity. Hence, we
select only unique images for further processing. To extract unique
images, we compute Perceptual hash [13] of the image using it’s
Di�erence Hash (dHash 2) implementation. If the hash values of
two images are same they are considered duplicates and grouped in
a cluster. From each cluster only one unique image is selected and

1h�ps://dev.twi�er.com/rest/public/search
2h�ps://pypi.python.org/pypi/ImageHash

Table 1: Details of Data Collection.

Event Total
Images

Unique
Images

Category

EuroCup 3,489 827 Sports
Wimbeldon 3,229 1,327 Sports
Olympics 2,264 1,968 Sports
BREXIT 3,728 1212 Politics
BRICS 4,618 1,102 Politics
UNGA 2,756 1,572 Politics
US-Elections 98,813 5,000 Before-Election
US-Elections 218,289 5,000 A�er-Election



we also maintain a count of number of duplicate images present
for each selected unique image. �is count is later used as a score
to rank the �nal results based on their social popularity. For the
US Elections event, since the total images collected is much more
than the other cases, we randomly sample top 5000 most retweeted
unique images, to maintain the consistency with other events. �e
unique images column in Table 1 shows the reduction in number
of images a�er pruning the duplicate images. On an average we
are able to reduce 55% of duplicate images for all the events.

3.3 Sampling and Pruning Candidate Patches
A�er �nding the unique images, we use them to sample random
patches. We scale these images at various levels to randomly sample
high-contrast patches of various resolution. �e quality of patches
plays a signi�cant role in the process of generating a meaningful
summary of an event. To prune the non-informative patches, we
apply a multi-stage �ltering process explained below. Stage-2 in
�gure 2 shows the sample patches pruned at each �ltering stage.

As image gradients are used to extract information from images,
we calculate the gradient magnitude of each patch by applying Sobel
�lter and take the mean value of its output. Only those patches that
have a gradient value above a �xed threshold value (20 in our case,
obtained experimentally) are allowed to pass to the second stage.
With this, we are able to remove non-informative patches like just
a plain background patch. We also discard very small patches, i.e.
patches that have height or width less than 40px.

Now from the patches selected by the above �ltering, we prune
patches primarily containing text by using Pytesseract 3 (an OCR
tool for python). If Pytesseract is able to detect text in a patch, we
calculate the area covered by the textual region in the patch. If the
text area is more than 50% of the patch area (i.e. a major portion in
the patch is occupied by the text), we reject that patch. �e reason
to discard patches with a lot of text is that they mostly belong to
memes or screenshot categories and are o�en less relevant to form
the elements that would be useful to summarize the event. By the
end of this step, we select patches where either Pytesseract is not
able to detect text or the area of the textual region detected is less
than 50% (chosen experimentally) of the patch area.

In the next level, we pass the resultant pruned patches from the
previous step to a trained model, Deepmask [15]. �e model is
applied to an image and it generates a set of object masks, each
with a corresponding objectness score. �e objectness score de�nes
the likelihood of the patch being centered on a full object. By
experimentation, we set a threshold of 0.99, and if the objectness
score of a patch is above the threshold, then the patch is passed to
the next level.

Finally, we use the location of the masked object detected by
Deepmask to identify if the object detected is in the centre of the
patch or not. We calculate the centre of the bounding box of the
masked object, and check if this point lies in the central window
of the patch. �e central window of the patch (having height h
and width w) is de�ned as the area covered by a rectangular region
(h/2 × w/2) whose centre is same as the centre of the patch. If
the centre of the detected object lies in the central window region,
we assume that the masked object is located in the centre of the

3h�ps://pypi.python.org/pypi/pytesseract

patch. By the end of this step, we select the patches where masked
objects are located in the centre. �ese patches are known as
candidate patches which will further be used in the discriminative
learning approach to discover mid-level visual elements. �is multi-
stage �ltering process can e�ciently (a) discard noisy and less
informative patches, (b) select patches which are more meaningful,
o�en containing an object in the centre, and (c) reduce the number
of unsuitable patches to large extent, aiding the linear SVM detector
(discussed next) to learn from a be�er sample set and also speed
up the overall process. Table 2 shows the reduction in the number
of patches for di�erent events when pruning is applied. On an
average we are able to reduce 49.8% of patches a�er applying the
multi-stage �ltering process.

3.4 Mining and Ranking #VisualHashtags
In the previous step, we sampled and pruned patches using various
�lters to discard noisy patches. Now, we �nd the patches from
the target event, which occur frequently in the target dataset and
are also discriminative to the target event. For this, we follow the
discriminative clustering approach used in [10].

Each candidate patch from the target event (positive dataset) is
taken as a seed patch, and its k nearest-neighbors are computed
using HOG features [8], to form a cluster of similar patches. �ese
seed patches are also known as detectors. Next, we rank the detec-
tors based on the proportion of positive patches in their respective
nearest neighbors sets and pick the top n detectors.

Although the aforementioned process forms a good method for
sampling initial detectors, using HOG feature similarity to compare
patches alone does not su�ce to be a metric capable of creating
visually coherent clusters [10]. Hence, this step is followed by the
discriminative learning algorithm of iteratively training SVMs for
each of the selected n detectors. �e HOG representation of the
patches is used as feature vectors in this SVM training process.

As referred in Algorithm 1, for each of the detectors, an SVM
is trained with top k (5, in our case) positive nearest neighbors
taken from previous KNN sampling and all the patches from the
negative dataset taken as negative samples. �is is followed with
testing of the SVM learners on the positive set. A�er each round
of this testing, the top k detections are added to the positive set
of each cluster (K), i.e. initially the positive set size is k , a�er the
next iteration it becomes 2k , and so forth. �is process is carried
out for l iterations. A�er each iteration the detector is expected to
improve it’s capability to discriminate between the positive and the
negative set. It should be noted, both the positive (P ) and negative

Table 2: Number of patches selected at each �ltering stage,
and percentage of noisy patches pruned at the end.

Event Initial
Patches

Grad.
Pruned

Text
Pruned

Deepmask
Pruned

Centr.
Pruned

Reduce
%

Euro 20,635 19,428 19,237 14,607 11,917 42%
Wimb 33,151 31,222 30,604 21,983 17,140 48%
Olymp 49,176 46,312 43,669 32,727 26,211 47%
BREXIT 30,264 28,828 27,677 17,544 13,937 54%
BRICS 27,526 26,363 25,124 18,431 14,821 46%
UNGA 39,276 38,108 36,229 24,021 19,849 49%



(N ) sets are divided into l parts, and used in pairs. �e training
part of the algorithm takes place on one of these pairs and is tested
on a di�erent one. �e number of iterations is decided based on
experimentation, being 3 in our case.

�e �nal set of detectors are then ranked based on the proportion
of positive patches in the set of nearest neighbors, the nearest
neighbors now are calculated based on the SVM score instead of
the earlier HOG feature similarity, along with the social popularity
score integrated according to the following equation:

scorei =
n∑
j=1

(−1)cSj
n − j + 1

n
(1)

Where scorei is the score of the detector, n is the number of
nearest neighbors, c is the class of the nearest neighbor (1 for nega-
tive, 0 for positive), Sj is the frequency (number of duplicates) of
the image to which the patch belongs. Finally, a�er ranking the
detectors and their clusters based on the social popularity score of
their corresponding images, we select top N clusters to summarize
the target event, these resultant patches are known as #VisualHash-
tags.

Algorithm 1 Discriminative Learning
1: D1, D2, D3 … Dn . Set of n Detectors
2: K1, K2, K3 … Kn . Clusters of nearest neighbors
3: P = P1, P2, P3… Pn . Positive dataset divided into l parts
4: N = N1, N2, N3 … Nl . Negative dataset divided into l parts
5: for i = 1 to n do
6: Ki = HogBasedKNN(Di, P1, k)
7: end for
8: for i = 1 to l do
9: P∗ = ChooseWithoutReplacement(P)

10: N ∗ = ChooseWithoutReplacement(N)
11: for j = 1 to n do
12: SVMj = trainSVM(Dj, Kj, N*)
13: Kj = [Kj, topSVMDetections(SVMj, P*, k)]
14: end for
15: end for
16: for j = 1 to n do
17: Scorej = score(Dj,Kj)
18: end for

4 RESULTS AND ANALYSIS
In this section, we present the analysis and visual summary ob-
tained, when our approach is applied on the dataset we collected.

4.1 Summarizing sports and political events
Figure 3 and 4 show the summarization results obtained on Sports
and Politics events respectively. Due to lack of space, we present
here 10 randomly selected mid-level visual elements from top 20 in
the results.

As can be noted from the summary shown, the top visual ele-
ments that cover the essence of EuroCup contains football, player’s
jerseys, players expressing di�erent kind of emotions, logo of the
tournament, etc. Visual elements like tennis racket, logo of the tour-
nament, patches of stadium, tennis court, and players in di�erent

playing positions covers the essence of Wimbledon. For Olympics
the summary contains the patches of medals, logo of the event,
scoreboards and images of some players. Analyzing the political
events, in BREXIT, patches portraying �ags of European Union,
street view of Britain and people protesting are the in�uential visual
elements discovered. For BRICS, the logo of BRICS Summit, �ags of
di�erent participating countries, and pictures of representatives of
each country forms the crux of the dataset. While in UNGA apart
from the logo of UNGA, it seems that the dataset is dominated by
the images of a representative, whose speech was apparently one
of the most talked about speech in UNGA-2016.

4.2 Temporal analysis during Election-2016
A useful application of this approach, suitable for social media
dataset is to evaluate the change in summaries during the course
of the event. Here, we show the shi� in the key-patches posted by
the users at two distinct time instants of the recently conceived US
2016 Elections. We collect images posted in context of the US 2016
presidential elections, and divide the collection into two parts: (a)
images posted before the election day (8th Nov), and (b) images
posted a�er 8th Nov. Figure 5 shows the visual summary and the
shi� in dominating patches of the US Election2016 before and a�er
the election day. As can be noted from Figure 5(a), most of the
visual elements from prior-elections dataset contains patches of
banners which are generally part of campaigns before the elections.
While if we see Figure 5(b), the visual corpus a�er the elections
seems to be mostly containing maps of the US showing the results
of the elections in di�erent parts of the country, along with patches
depicting the results in graphs and �gures. It can be noted that the
textual patches in the prior-election dataset are the ones, which
were either not identi�ed under OCR pruning or the ones where
the textual area is less than 50% of the patch area.

4.3 Linking #VisualHashtags
Another application of #VisualHashtags is to identify correlation
among the detectors. �e detectors from these visual elements
can be linked based on the similarity of the images they belong to.
Each detector is represented by a set of patches that are visually
similar to it (a.k.a cluster of nearest neighbors), and each patch in
the cluster belongs to an image from the event.

We visualize this linking by an undirected graph G (V ,E), where
each node V is represented by the detectors in #VisualHashtag and
E represents an edge between two detectors, if they are linked. We
will use the terms node and detector interchangeably here.
Table 3: Percentage of purity, coverage and search space re-
duction of images and patches o�ered a�er summarizing
events.

Event Purity Coverage SSR
(Images)

SSR
(Patches)

EuroCup 68% 25% 94% 98%
Wimbeldon 84% 11% 93% 99%
Olympics 90% 11% 90% 99%
BREXIT 68% 19% 94% 99%
BRICS 86% 27% 95% 98%
UNGA 100% 15% 92% 99%



(a) #VisualHashtags for EuroCup (b) #VisualHashtags for Wimbledon (c) #VisualHashtags for Olympics

Figure 3: Summarizing sports events for (a) EuroCup (b) Wimbledon (c) Olympics.

(a) #VisualHashtags for BREXIT (b) #VisualHashtags for BRICS (c) #VisualHashtags for UNGA

Figure 4: Summarizing politics events for (a) BREXIT (b) BRICS (c) UNGA.

To �nd if there exists a link between two nodes, we de�ne a
comparison function C . �is function compares the corresponding
images of the patches in the clusters of two detectors. For example,
let there be two detectors Dx and Dy , comprising of n patches
{Px1, Px2...Pxn } and {Py1, Py2...Pyn } in their cluster. Further, each

(a) Summarizing US Election2016 be-
fore the election day

(b) Summarizing US Election2016 af-
ter the election day

Figure 5: Analysing the visual elements dominating the
dataset before and a�er elections.

patch in the cluster belongs to an image, forming image set of size
m, {Ix1, Ix2...Ixm } and {Iy1, Iy2...Iym }. �e comparison function
returns the number of images that are similar (N ), for the pair of
detectors. In this implementation, we calculate the similarity of two
images using perceptual hashing [13]. �e equation below shows
the implementation:

N = C ( Similarity (Ixi , Iyj ) ) , ∀ (i, j ) (2)

Figure 6: Graph showing connections between di�erent
patches signifying their co-occurrence in images.



Using the output of the comparison function, we calculate the
proportion of patches in the cluster that belong to similar images
(N /n), if this proportion is greater than a threshold t , then we can
say that there is a link between the two detectors. �is link between
the two detectors signi�es that, in most of the images these patches
(objects in the patches) co-occur. �is information can be further
used to identify what kind of objects co-occur in the images of such
viral events.

Figure 6 shows the pa�ern formed a�er linking the detectors
from #VisualHashtags of Wimbledon. �e links between patches
of stadium, players and tennis court signi�es that these patches
(objects) mostly co-occur in the images of Wimbledon.

5 EVALUATION TECHNIQUE
In this section, we present an evaluation of the discovered #Visual-
Hashtags for di�erent datasets. We evaluate the approach at both
quantitative and qualitative levels.

5.1 �antitative Analysis
For quantitative analysis, we evaluate the summarization approach
on three metrics (a) the discriminative quality of the patches in the
result, (b) proportion of dataset covered by the resultant patches,
and (c) the reduction in the search space that a user otherwise has to
go through, thus saving on the time to analyse the data. Hence, we
use a metric purity also used by [9], to evaluate the discriminative
quality of the resultant mid-level visual elements. It is de�ned as
the percentage of patches from the target event (positive dataset)
in the result. We also calculate the coverage, which is de�ned as
the percentage of the unique images covered in the dataset by the
resultant patches. Finally, we calculate search space reduction (SSR)
o�ered a�er the summarization process. Table 3 shows the purity,
coverage and the percentage of search space reduction (SSR) for
both images and patches, o�ered a�er summarizing each event. We
observe a signi�cant search space reduction of 93% in images and
99% in patches. We also observe a high purity of 83% on average
and a mean coverage of 18% unique images.

5.2 �alitative Evaluation
We follow the similar approach as [12, 18] to create relevance
judgements for the #VisualHahtags selected to summarize di�erent
events through a user-centric evaluation. �e group of annotators
comprised 21 persons 20-30 years old. For each event, we ask 4 set
of questions:
(1) �e #VisualHashtag comprising of the top 10 patches from the
�nal ranked result are shown to the users. �e aim of this question
is to check if the users are able to identify the event by just looking
at the #VisualHashtag.
TaskDescription: Given the set of patches below, choose the most
appropriate event which it summarizes.
Summary: EuroCup, Wimbledon, Olympics and UNGA are cor-
rectly identi�ed by 100% of the users, while BRICS is accurately
identi�ed by 91% users and BREXIT by 95% of the people.
(2) Top 10 patches from #VisualHashtag are shown. �e aim of this
question is to �nd how many patches are relevant w.r.t. the event
selected above.
Task Description: Select all the patches that can be distinctly
linked with the event chosen above.

Summary: 51% of the users said atleast 4 out of 10 patches alone
can be distinctly linked with the event. �e Mean and standard
deviation of the user’s answers is shown in relevance section of
table 4.
(3) �e top 10 patches are shown to the users. �e aim is to �nd
how many patches correspond to full objects or meaningful parts
of an image.
Task Description: Select all the patches that are meaningful, i.e.
covering a meaningful part of an image.
Summary: For all the events on an average, more than half of the
users said that atleast 50% of patches are meaningful. �e Mean and
standard deviation of the user’s answers is shown in meaninfulness
section of table 4.
(4) �e #VisualHashtag along with the cluster of each patch (detec-
tor) is shown. �e aim is to check the quality of clustering done.
Task Description: How many of the below rows demonstrate
strong correlation (containing similar elements like faces/buildings
etc) among their elements?
Summary: For all the events on an average, half of the users said 8
or more out of 10 mid-level visual elements show strong correlation
in their clusters (nearest-neighbors).

Referring to the evaluation metric followed on user evaluations
in [12], we also use the following same metrics for a more thorough
qualitative assessment on the user evaluation for our results:
(1) Precision (Pr@N): �e percentage of patches among the top N
that are relevant/meaningful to the corresponding event, averaged
among all events. We calculate precision for N equal to 1, 5, and 10.
(2) Success (S@N@D): �e percentage of responses, where there
exist at least D relevant/meaningful patches amongst the top N. We
calculate success for N equal to 10 and D equal to 1, 3 and 5.
(3) Mean Reciprocal Rank (MRR): Computed as 1/r, where r is
the rank of the �rst relevant/meaningful patch returned, averaged
over all events.
�e value of all the three metrics mentioned above vary from 0-1,
where higher values means be�er results. �ese metrics are com-
puted for the two quality measures we aim to test in question 2 and
3 above- “relevance” and “meaningfulness” of the patch. As table 4
reads:
(a) For Pr@1, the precision on both quality-measures remains high
for both politics and sports events when evaluating the top patch
(i.e. for N=1), which is con�rmed by evaluating their respective
values of MRR as well. Further, if we see Pr@5, i.e. for N=5, close
to half of the patches are considered relevant and meaningful in
both types of events.
(b) Evaluating success, at N=1 (S@10@1), we observe that all the
events have at least 1 relevant and meaningful patch thus the suc-
cess rate is high for all the events in both sport and politics category.
While, for N=3 (S@10@3), the success rate on both the measures
for the events is close to 60% for sports and 46% for politics, i.e. at
least 3 high-quality patches are generated close to half the time for
all the events.
(c) In general, it can be observed that sports events re�ect be�er
results (in terms of relevance and meaningfulness) compared to
the politics events. One of the reasons that can be a�ributed to
this observation is that, one can easily connect patches like jerseys,
balls, rackets, players, logos, etc to a sports event.
(d) Looking at the intersection (Mea.+ Rel.), we observe that there



Table 4: Precision, Success, MRR, Mean and Std. Dev., based on the qualitative analysis of the summarized events.

�ality-measures Pr@1 Pr@5 Pr@10 S@10@1 S@10@3 S@10@5 MRR Mean S.Dev Category
Relevance (Rel.) 0.94 0.57 0.45 1.0 0.75 0.48 0.95 4.5 2.4 Sports
Meaningfulness (Mea.) 0.95 0.58 0.44 1.0 0.79 0.43 0.97 4.3 2.0 Sports
Intersection (Rel.+ Mea.) 0.90 0.46 0.32 0.95 0.60 0.27 0.50 3.3 1.9 Sports
Relevance (Rel.) 0.79 0.54 0.41 1.0 0.57 0.37 0.87 4.1 2.6 Politics
Meaningfulness (Mea.) 0.79 0.58 0.41 1.0 0.71 0.38 0.87 4.1 2.1 Politics
Intersection (Rel.+ Mea.) 0.75 0.44 0.29 0.97 0.46 0.17 0.52 2.9 1.9 Politics

is a considerable overlap in meaningfulness of a patch and it’s
relevance indicating a correlation between the two.

5.3 Comparison with basic discriminative
method

In this section, we do a comparison of our approach with the basic
discriminative method used by Doersch et al. [10]. We show the
analysis on only the “EuroCup” dataset due to lack of space. Figure
7 shows the top-10 mid-level visual elements of EuroCup, obtained
by our algorithm, �ltering and discriminative (FILT DISC) approach
and the discriminative (DISC) methodology followed by [10].

We also do a quantitative comparison showing the di�erence
in the purity-coverage (de�ned in section 5.1) values of the two
approaches, when top 20 descriptors are chosen and the number
of nearest-neighbors are varied from 5-25 with a step size of 5.
Table 5 shows the results of quantitative analysis, where P@n and
C@n are the purity and coverage values with n nearest-neighbors
selected. As can be noted, when we use our approach (FILT DISC),
with a slight reduction in purity of patches there is a high jump
in the dataset coverage as compared to the DISC approach, for all
the nearest-neighbor values. As can be seen from Figure 7 (b), the
reason of high purity in direct application of discriminative (DISC)
approach is the presence of the patches from duplicate images in
the social media data, unlike Figure 7 (a), where the patches in
the nearest-neighbors are from di�erent images hence, covering a
wider view of images present in the dataset. However, in Figure 7
(b), the redundancy in results is quite high and the user experience
is negatively impacted. Further, it reduces the coverage of unique
images to which the top n nearest patches belongs, lowering the
diversity of data in the summarization results.

6 CONCLUSION AND FUTUREWORK
In this work we present a methodology to visually summarize social
media events using #VisualHashtags. To extract these #VisualHash-
tags, we start by sampling large number of random patches, and
�lter them based on their gradient value, the textual region propor-
tion, and probability of it containing an object in the centre. Next,
we use a discriminative approach to discover a set of patches which
are both representative and discriminative to the event and rank
them using social popularity score to summarize an event.

(a) Summarizing EuroCup using
(FILT DISC)

(b) Summarizing EuroCup using DISC

Figure 7: Comparing summary obtained by our approach
FILT DISC in (a) with DISC approach in (b).

We further show the application of this approach in analytics.
A�er �nding a #VisualHashtag for an event, pa�erns can be mined
among patches by linking them based on their co-occurrence in
similar images. We also show that performing summarization of
an event at di�erent time instances, generates #VisualHashtags
representative of the temporal change that takes place during the
course of an event.

We evaluate our results using both qualitative and quantitative
methods on sports and politics datasets. At the end, we also show
a comparison of our approach with basic discriminative method on
social media data.

Currently, our approach is centered around events that con-
tain images with relative stylistic coherence and uniqueness, and
thus #VisualHashtags generated also focus on concrete entities. As
future work, the technique can be modi�ed to summarize more
abstract phenomenon like violence, summer, etc. �e mid-level
patches obtained as a summary of a particular viral event, can
be further generalised to pave way for �nding higher-level image
features that can cover the essence of an event. While the cur-
rent approach needs to be re-run to generate #VisualHashtags at
di�erent time instances, dynamic re-summarization would be an
interesting direction to explore, making it a more real-time system.

Table 5: Percentage of purity and coverage of the results with di�erent nearest-neighbors for DISC and FILT DISC.

Approach P@5 C@5 P@10 C@10 P@15 C@15 P@20 C@20 P@25 C@25
DISC 100.0 0.77 100.0 1.11 94.3 1.37 85.5 2.03 79.0 2.57
FILT DISC 93.0 10.17 88.0 20.80 77.0 22.72 68.0 24.41 67.0 25.36
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