
Similarity Computation Exploiting the Semantic
and Syntactic Inherent Structure

Among Job Titles

Sarthak Ahuja1(B), Joydeep Mondal1, Sudhanshu Shekhar Singh1,
and David Glenn George2

1 IBM Research Lab, New Delhi, India
sarahuja@in.ibm.com

2 IBM Talent Management Solutions, Portsmouth, UK

Abstract. Solutions providing hiring analytics involve mapping com-
pany provided job descriptions to a standard job framework, thereby
requiring computation of a similarity score between two jobs. Most sys-
tems doing so apply document similarity computation methods to all
pairs of provided job descriptions. This approach can be computationally
expensive and adversely impacted by the quality of the job descriptions
which often include information not relevant to the job or candidate qual-
ifications. We propose a method to narrow down pairs of job descriptions
to be compared by comparing job titles first. The observation that each
job title can be decomposed into three components, domain, function
and attribute, forms the basis of our method. Our proposal focuses on
training the machine learning models to identify these three components
of any given job title. Next we do a semantic match between the three
identified components, and use those match scores to create a composite
similarity score between any two pair of job titles. The elegance of this
solution lies in the fact that job titles are the most concise definition
of the job and the resulting matches can easily be verified by human
experts. Our results show that the approach provides extremely reliable
results.

1 Introduction

The problem of finding similarity between a pair of documents lays groundwork
for the problem of clustering similar documents together. Most of the initial
research in this domain was based on standard document similarity computing
methods such as tf- IDF, LSA, LDA etc. In certain specific scenarios, such as
job descriptions in recruitment domain, the documents have very precise titles
as well. Doing a preliminary match between pairs of titles can greatly reduce the
effort required to eventually compare documents for similarity.

In our work for the recruitment analytics domain, and the recent develop-
ments therein, one problem that we have faced time and again is that of identi-
fying which job requisitions are similar. This problem arises in two contexts:
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 3–18, 2017.
https://doi.org/10.1007/978-3-319-69035-3_1



4 S. Ahuja et al.

1. Machine Learning models to identify good candidates: A typical application
of machine learning in hiring is to learn success models for various jobs. To
be meaningful, the models need to be learnt at a job group level instead of
job level, so that sufficient data can be obtained for training the models.

2. Candidates’ previous jobs need to be matched with the opening they apply
to (or to the openings that can be recommended to them). This requires
comparing an applicant’s job previous jobs to the job openings available in
the applicant tracking system.

Job requisitions typically consist of several well-defined components: required
skills, years of experience, job title, job location and a job description. Since
required skills, years of experience and job location are well-defined structured
fields, the complexity comes in matching job title and job descriptions across
jobs. In this paper, we present a Parts Of Title (POT) tagging and wordnet
based matching technique to create a match score for two job titles.

Our work here is based on the basic premise that any given job title can be
broken into three components Attribute, Function and Domain. Attribute typi-
cally denotes some sense of hierarchy (Senior, Junior, lead etc.), function denotes
functionality (Manager, supervisor, director etc.), while domain is about the core
job area. For example, a senior software engineer is a software (domain) engineer
(function) at senior level. A senior electrical engineer is an electrical (domain)
engineer at senior level. Although the two job titles have two out of three com-
mon words, they are obviously not the same jobs. A software engineer or even a
junior software developer is a much closer job to senior software engineer than
senior electrical engineer.

These three components might contains multiple words, or can also be null
depending upon the context. Our work here describes a method that utilizes
semantic match scoring between the three components, and combining those
scores using logical domain insights to create a match score between a pair of
job titles.

This paper is organized as follows. The next section describes some liter-
ature on title or phrase similarity/clustering. Section 3 describes the complete
pipeline and methodology. Section 4 explains the methodology, Sect. 5 presents
our evaluation and results. Section 6 concludes and discusses some future work.

2 Literature Survey

In typical text document classification and clustering tasks, the definition of a
distance or similarity measure is essential. The most common methods employ
keyword matching techniques. Methods such TFIDF [2] leverage the frequency
of words occurring in a document to infer on similarity. The assumption is that if
two documents have a similar distribution of words or have common keywords,
then they are similar. Researchers have also extended this to N-gram based
models, where group of consecutive words are taken together to capture the
context. With large N gram models, typically large corpus of documents are
required to obtain sufficient statistical information. As could be seen from the



Similarity Computation Exploiting 5

senior software engineer versus senior electrical engineer example in the previous
section, these traditional document similarity methods do not work so well when
matching short snippets of text, such as job titles. There are methods involving
web based kernel function [10], wherein results of web search query are used to
provide context to the short terms being compared. This paper defines a semantic
similarity kernel function based on query search results, mathematically analyze
some of its properties (similarity score going to 1 for similar queries as the query
results sets cover all the relevant documents; the kernel measuring mean topical
distance between the queries), and provide examples of its efficacy.

An alternative classification system [3] employs lazy learning from labeled
phrases, and present a strong argument in favor of their method when the prop-
erty of near sufficiency (most of information on document labels is captured
in phrases) holds. They also reveal that in all practical cases from small-scale
to very large-scale manual labeling of phrases is feasible as natural language
constrains the number of common phrases composed of a vocabulary to grow
linearly with the size of the vocabulary. Variants of phrase based classification
have been studied in Information retrieval [9] and it has the advantage of ease
of explainability.

Rich document representations and similarity measures are also an option
for job title classification [11]. Semantic enrichment strategies replace the bag
of words (BOW) representation that is more popular text classification as it is
less adept at handling synonyms, polysemous words and multi word expressions.
A machine learning- based semi-supervised job title classification system [4],
leveraging a varied collection of classification and clustering tools and techniques,
can be used to tackle the challenges of designing a scalable classification system
for a large taxonomy of job categories.

A technical report [8] on learning compound noun semantics discusses an
annotation scheme for compound nouns to derive compound relations (BE,
HAVE, IN, ABOUT, ACTOR, (INST(rument))), and uses this annotation
scheme to meaningfully compare compound nouns. This report inspired us to
create learners to tag the three components of a job descriptions for a mean-
ingful comparison between them. The final paper [7] combines pattern-based
extraction and bootstrapping for noun compounds interpretation. They use a
two-step algorithm to jointly harvest NCs and patterns (verbs and prepositions)
that interpret them for a given abstract relation.

3 Methodology

Our proposed approach to generate a similarity score between two titles T and T ′

is illustrated in Figs. 1 and 2. In the former we illustrate the steps for setting up
the system and in the latter we depict the steps that take place in the deployed
system.

We start with a labeled dataset of titles, where each constituent keyword
has been labeled with a particular context in which it occurs. For our training
phase as described in Fig. 1 we use 90% of this data, while the remaining 10%



6 S. Ahuja et al.

Fig. 1. Training Phase. In (1) titles for all documents available in the training set are
extracted and their keywords are labeled with the ground truth context. Next in (2) for
each of these keywords a dictionary is built using WordNet to maintain top synonyms
and corresponding similarity scores on a cloud database for faster computation. Later in
(3) feature vectors for each keyword are extracted and passed onto the Model Training
phase. Finally, all permutations of arrangement of models are trained on the dataset
and the arrangement with the highest validation accuracy is stored for deployment and
evaluation on the testing dataset.



Similarity Computation Exploiting 7

Fig. 2. System Deployment. In (1) incoming documents have their titles extracted and
feature vectors for their constituent keywords created. Moving to (2), based on the
arrangement of the models, the keywords are labeled with their context. Next in (3),
for each context the assignment problem is formulated and solved to identify one-to-one
matches for keywords within a particular context. Here, these matches are depicted in
green. Finally in (4) the similarity scores over each context are computed using the
dictionary created over the training phase and later aggregated to generate an overall
similarity score.



8 S. Ahuja et al.

is used for testing. Our goal is to create classification models which are able to
label keywords of a jobTitle with their context. Once we have a system capable
of doing this type of labeling, we move on to using these contextual labels to
calculate similarity scores over these contexts and finally aggregate these scores
to generate an overall similarity score.

In this section we explain these steps alongside their system implementation
in greater detail.

3.1 Title Representation

Each title Ti is treated as a set of sequenced keywords K(ki1, ki2, ...kin). When
comparing two titles, it is imperative that the similarity between two keywords
that have the same context contributes towards the final score and not the
similarity among two keywords with a different context. In the specific case of
Job Titles, we hypothesize that a constituent keyword can have three contexts
i.e. each title can be represented as a collection of keywords organized into three
sets domain, function and attribute as depicted below

Assistant Software Engineer can be represented as -
Domain - [Software]
Function - [Engineer ]
Attribute - [Assistant ]
similarly Senior Call Center Consultant can be represented as -
Domain - [Call, Center ]
Function - [Consultant ]
Attribute - [Senior ]

Here domain symbolizes words which are representative of the field/industry
of work, function symbolizes the line/position of work, while attribute corre-
sponds to any supporting characteristic of the function and domain. Given the
diversity of job titles that appear on resumes and job databases, any two of the
three sets may be empty. Throughout this paper, we will refer to this collection
of sets representation of a title Ti as Ri, consisting of RD

i , RF
i and RA

i , with con-
stituent elements being denoted as [di1, di2...dij ], [fi1, fi2...fik] and [ai1, ai2...ail]
respectively as depicted in Fig. 1.

3.2 Preprocessing

For each keyword in a title we perform basic preprocessing to clean the data:

1. Lower Case: All titles are converted to lower case characters and trailing
spaces are trimmed off.

2. Abbreviation Expansion: We expand common abbreviations such as sr.
to senior, jr. to junior using a hard coded list of common abbreviations.

3. Punctuation and Number Pruning: Punctuation marks like ‘ ’, ‘-’, etc.
are removed by pruning all non-alphabet characters.

Once the data is cleaned, we move on to constructing the feature vectors on
which the classification models will be trained.



Similarity Computation Exploiting 9

3.3 Feature Extraction

In our approach we create 3 separate binary classification models for each of the
aforementioned contexts - domain, function and attribute. For each title Ti, the
three classifiers label each constituent keyword Ki. The label with the highest
confidence for the positive class is taken as the label for the keyword. This section
elaborates on the features extracted features and the intuition behind choosing
them.

Position. The position of a keyword comes out to be an important parameter
in determining it’s context. For example, in the job titles - Assistant Software
Engineer and Assistant Manager, the word Assistant acts as an attribute
when it appears in the beginning of the word, while in the job title Lab Assis-
tant , it acts as a function.

It is important to understand at this juncture, that the same word can
appear in different contexts depending on it’s position, hence making posi-
tion an important feature. In our approach we define 3 boolean features -
position begin which denotes whether the keyword appears at the beginning
of the title, position end which denotes whether the keyword appears at the end
of the title and position between which denotes whether the keyword appears
in the middle of the title.

Suffix. We listed a set of common keywords found in Domains, Functions and
Attributes and noticed some patterns with the suffixes. For example:

Words labeled as Domain: Ophthalmologist, Dentist, Psychiatrist, etc.
Words labeled as Function: Engineer, Doctor, Manager, etc.
Words labeled as Attribute: Junior, Senior, etc.

Our first observation was the pattern of -ist suffix for the Domain words.
This observation is consistent with the definition of -ist being forming nouns
denoting a member of a profession or business activity [1]. However for the
Functions and Attributes the suffix usage is tightly correlated with its context.
As example, -or can be used to denote a person or thing performing the action
of a verb [1]. It also can be used to form comparative adjectives.

Based on these observations, in our approach we define two suffix lists for
the three contexts and for each define the feature as a boolean on whether the
suffix of the keyword is present in the concerned list. For example, the suffix list
defined for the function and attribute classifier was defined as [‘or’, ‘er’, ‘ors’,
‘ers’, ‘ar’, ‘ars’] and hence, the feature vector for the keyword Manager marks
the suffix feature as 1 for the function classifier. Similar list is created for the
domain classifier as [‘ist’, ‘ists’].

It should be noted that we limit the size of these lists, to only include the most
common observations using basic knowledge of English grammar and vocabulary,
and do not mine for any suffix patterns explicitly.



10 S. Ahuja et al.

Keyword POS Tag. Next we append to the feature vector a Part-Of-Speech
Tag for the corresponding keyword using the Stanford POS Tagger. The tagger
can tag the keyword with 1 of the 36 labels.

An important fact we note is that the POS Tag of the keyword is at times
different from the POS Tag of other versions of the same keyword. For example,
manager is tagged as noun while manage is tagged as verb. Considering that
ideally both should be labeled with the same context, besides the original POS
Tag, we reduce the keyword to it’s root and add the POS Tag of the root word
as well. Hence, for this feature we append two values to the feature vector, POS
Tag of the keyword and POS Tag of the root of the keyword.

In our implementation, we refer to vocabulary.com to extract the root of a
keyword.

3.4 Feature Vector Construction

The features explained in the previous subsection are combined to form a fea-
ture vector. If we assume that all three classification models are independent
of each other we get each keyword being depicted in the form of 3 feature vec-
tors each of length 7. But we observe that as humans we do not label all the
keywords independently. Once we have obtained the prediction for one or two
of the context labels for a keyword in the title, we get contextual information
that increases our confidence to label it for a different context. For example, for
Assistant Software Developer, once we identify that Software is not the
function word, we get more confident about labeling it as domain. Given our
problem, we assert that this ruling out step will play a crucial role in improv-
ing the classifier accuracies. Keeping this in mind, based on the dependencies
amongst classifiers, the feature vector for a classifier may also have the predicted
label of a previously checked classifier. In the previously mentioned example, if
we identify that the domain classifier is dependent on the function classifier, we
will see the feature vector being fed into the former be of length (7 + 1), after
appending the prediction of the function classifier to the feature vector. In the
training stage, instead of actual model predictions we use the ground truth value,
while in the testing (system deployment) stage, we use the actual prediction of
the trained models. Figure 3 displays the possible arrangements of the models.

Fig. 3. All possible dependency relationships that can exist between three models. Here
a, b and c can represent any of Domain, Function and Attribute, hence generating a
total of 16 possible arrangements.



Similarity Computation Exploiting 11

In our case we perform an evaluation on all 16 possible arrangements,
explained in Sect. 5 and choose the best arrangement based on validation accu-
racy. This selected arrangement of models represents the identified dependencies
among the context classifiers, and is deployed in the system and used on the
testing dataset for our final evaluation.

The next section explains the training procedure for each individual model.

3.5 Model Creation

For each context, we train models using SPSS’s autoclassifier module which
trains a bunch of classifiers on the data - neural net, C5, Logistic Regression,
CHAID, Quest, C&R, Bayesian Network, Decision List. We use 90% of our
labeled dataset for this model creation. We apply a 10-fold validation on this
dataset and select the model with the highest average validation accuracy as
depicted in Table 1. Our selected arrangement of models is depicted in Figs. 1
and 2. The best classifier for Domain and Function context comes out to be C5,
while for Attribute it comes out to be a neural net.

3.6 Assignment Problem Formulation

As depicted in Fig. 2, the two documents, D1 and D2, are represented by their
tokenized titles T1 and T2. After our selected arrangement of the three context
classifiers labels these keywords as either Domain,Function or Attribute they
are then represented as two sets of triplets, S1([RD

1 , RF
1 , RA

1 ]) and S2([RD
2 ,

RF
2 , RA

2 ]), each with elements [[d11, d12...d1j ], [f11, f12...f1k], [a11, a12...a1l]]
and [[d21, d22...d2j ], [f21, f22...f2k], [a21, a22...a2l]] respectively. Similarity score
between these two documents can be interpreted as the similarity score between
these two sets of triplets. The similarity function is explained in detail in the
next subsection, and is denoted by F for now. As mentioned earlier, when com-
paring two titles, it is imperative that the similarity between two keywords that
have the same context contributes towards the final score. There is no relevance
in the similarity among two keywords with a different context. To calculate the
similarity score between two sets, we calculate the similarity score independently
amongst the three contexts and aggregate them to get a final similarity score.
This aggregator function is explained in detail in the next subsection, and is
denoted by A for now. To find the similarity between two sets of the same con-
text, a naive approach would be to calculate the similarity score between each
pair of elements from two sets (example, RD

1 and RD
2 ), greedily pick the pair

with the highest similarity score and repeat the process till either one of the sets
has no element left. This greedy approach, although simple, does not provide an
optimal match between the sets being compared. We assume that there are no
repeating keywords in the Job Title, hence, the representative set for a document
too will not have synonymous elements. This assumption motivates a one-to-one
mapping among the two sets being compared for similarity.

To find this mapping among the aforementioned two sets, we formulate the
problem as an assignment problem. In a generic assignment problem, given the



12 S. Ahuja et al.

cost of assignment among each pair of elements in two sets, the task is to find an
optimal one-to-one assignment among the elements that maximizes/minimizes
the total cost of assignment. Our problem of finding such a one-to-one mapping
among one of the context sets of the S1 and S2 can be formulated in a similar
way - given F as the cost of assignment function among each pair of elements
in the two sets, the task is to find an optimal one-to-one assignment among the
elements that maximizes the aggregate similarity score.

Next, we use the Hungarian Method to extract out the matches. This method
takes as input a nxn square cost matrix and post applying a set of matrix oper-
ations, outputs an optimal set of n assignments, one per row and column, which
offer a maximum cumulative assignment score. Given ours is an imbalanced
assignment problem, the 2 sets with m and n keywords each, we start with a
mxn cost matrix, where each cell contains the similarity score between the cor-
responding row and column elements of the matrix. Without loss of generality,
we assume n > m, and add zero padding to extend the mxn matrix to a nxn
one. Rest of the steps for applying the Hungarian Method remain the same, as
for a typical score maximization assignment problem.

This assignment task is done independently for each of the three contexts.
Post this assignment, the following subsection defines the similarity and aggre-
gation functions.

3.7 Final Score Computation

In this subsection we define the previously mention similarity(F) and aggrega-
tor(A) functions.

Similarity Function. We use WordNet as the basis of our similarity function to
compute a semantic similarity score between two keywords. Any other methods
such as Word2Vec, etc. which provide a semantic similarity score between two
words could be possible alternatives to WordNet. WordNet is a large lexical
database of English language. Nouns, verbs, adjectives and adverbs are grouped
into sets of cognitive synonyms which is called synsets. Each synsets expresses
a distinct concept which interlinked by means of conceptual-semantic and lexical
relations. Wordnet provides synsets for a given English word [6]. To calculate
simsem between w1 and w2 we calculate wup similarity score between two synsets
corresponding to w1 and w2. Wu Palmer Similarity or wup similarity provides
a score denoting how similar two word senses are, based on the depth of the
two senses in the taxonomy and that of their Least Common Subsumer (most
specific ancestor node). After getting the scores between each sysnset we took an
average of the scores to get the semantic similarity score between w1 and w2 and
denoted it as simsemw1,w2

. Algorithm to find simsem is described in Algorithm 1.
On obtaining the simsem score between matches provided by the solution of the
assignment problem, the final Similarity Score for a context is taken to be the
average of all the simsem scores. We denote the Similarity Score for each context
- Domain, Function and Attribute as SimScored, SimScoref and SimScorea
respectively.



Similarity Computation Exploiting 13

To make the computation of this Similarity Score faster we employed some
optimizations in the scoring process. After obtaining the tokenized keywords
from a Job Title we used memoization and precomputation techniques to build
a dictionary Dict of keywords. The structure of the dictionary is depicted as in
Fig. 4. In the dictionary, every word w has been stored with its synonym list
synw. We used Wordnet dictionary from NLTK [5] to get synw for a given w.
We used cloudant Database to store this dictionary as JSONs. The structure of
the JSON is in Fig. 4. synw for a w consists of only the words which exist in
Dict and cross a threshold of semantic similarity score (simsem).

When Dict is empty and the algorithm encounters a new word it creates Dict
and stores an entry corresponding to the word. When Dict exists in the cloudant
database and algorithm encounters a w then it first checks whether it is present in
Dict or not. If w is not present in Dict then it will create an entry for w and will
generate a corresponding synw by calculating simsem with every other words in
Dict. The simsem of every other words of Dict will also be updated accordingly.
While processing each keyword, we precompute the semantic similarity scores
among the words and store them in a database.

Algorithm 1. SimSem Function
1: procedure SimSemFunction
2: Input: w1, w2

3: Output: simsemw1,w2
4: simsemw1,w2

← 0
5: synSetsw1 ← null
6: synSetsw2 ← null
7: synSetsw1 ← synsets from Wordnet for w1

8: synSetsw2 ← synsets from Wordnet for w2

9: div ← 0
10: for each synSetw1 of synSetsw1 do
11: for each synSetw2 of synSetsw2 do
12: wupscore ← wup similarity between synSetw1 & synSetw2

13: if wupscore is not null then
14: simsemw1,w2

← simsemw1,w2
+ wupscore

15: div ← div + 1
16: end if
17: end for
18: end for

19: simsemw1,w2
← simsemw1,w2

div
20: end procedure

Aggregator Function. The aggregator function is meant to collate the sim-
ilarity scores generated among matches provided by the solution of the assign-
ment problem. The definition of this function is described in Algorithm 2. The
equation is basically a weighted average of the three context similarity scores
where more weight is given to the Domain similarity, Function similarity and



14 S. Ahuja et al.

(a) Dictionary Structure for Keyword (b) JSON Structure for saving on Cloudant

Fig. 4. (a) Dictionary Structure for Keyword (b) JSON Structure for saving on
Cloudant

then Attribute similarity, in that order. Special care is taken in the averaging
process so that if both sets of a particular context turn out to be empty, they
are not included in the normalizing denominator.

Algorithm 2. Aggregator Function
1: procedure AggregatorFunction
2: Input: SimScored, SimScoref , SimScorea
3: Output: SimScore

4: SimScore =
1

(1SimScorea �=0 + 1SimScoref �=0 + 1SimScored �=0)
∗ (SimScored ∗

(1 + SimScoref ∗ (1 + SimScorea)))
5: end procedure

4 Experimental Setup and Dataset

We used a Spark cluster with 6 executors each having 8GB of RAM for run-
ning our experiments. Apache Spark framework has been used to incorporate
parallelization to carry out the experiments. All the codes have been written in
python. We used PySpark library to include Apache Spark environment into our
system. Cloudant services have been incorporated as database resource. We also
used Standford Core NLP Parser and Wordnet from NLTK library.

Job description documents from IBM Talent Framework Data sets have been
used to carry out all the experiments. Our training and validation set consists
of 4471 job titles, leading up to 16180 keywords. For our test set, we have 421
job titles corresponding to 71 different job families. Other details of the dataset
can’t be revealed here due to confidentiality issues.

5 Evaluation

Aspart of our evaluationwe first present the results of the training phase inTable 1.
Here for all 16 possible arrangements of model dependencies we calculate the train-
ing and validation accuracy. We observe that the maximum validation accuracy of



Similarity Computation Exploiting 15

Table 1. Selecting best arrangement of models

Arrangement Domain Function Attribute Average

Training Validation Training Validation Training Validation Training Validation
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

80.48 80.507 88.54 88.77 92.25 92.257 87.093 87.178

80.48 80.507 88.54 88.77 92.77 92.91 87.26 87.39

80.48 80.507 88.54 88.77 92.80 92.62 87.27 87.30

80.48 80.507 90.96 91.94 92.25 92.257 87.9 87.96

86.62 86.36 88.54 88.77 92.25 92.257 89.14 89.12

80.48 80.507 89.18 89.227 92.25 92.257 87.30 87.33

83.81 83.75 88.54 88.77 92.25 92.257 88.20 88.26

86.62 86.36 88.54 88.77 92.78 92.76 89.31 89.29

90.71 90.59 88.54 88.77 92.77 92.91 90.67 90.76

90.71 90.59 89.18 89.227 92.25 92.257 90.71 90.69

83.81 83.75 92.89 92.79 90.25 90.257 89.65 89.60

80.48 80.507 92.89 92.79 92.80 92.62 88.72 88.64

80.48 80.507 90.96 91.94 92.78 92.76 88.07 88.13

80.48 80.507 92.89 92.79 92.25 92.257 88.54 88.51

80.48 80.507 88.54 88.77 92.78 92.76 87.27 87.34

90.71 90.59 88.54 88.77 92.25 92.257 90.50 90.54

90.76% is obtained for a linear relationship among the context classifiers (f →
a → d). This arrangement is hence chosen for deployment and testing.

For our chosen model, in the testing phase we observe

1. an accuracy of 78.04% for the domain classifier
2. an accuracy of 87.01% for the function classifier.
3. an accuracy of 93.43% for the attribute classifier.

We did a job family based evaluation to test our method. Since we are using
IBM Kenexa talent frameworks, we can utilize its default clustering of jobs into
job families. We would expect jobs within a family (intra) to have higher title sim-
ilarity scores than those outside the job family (inter). The scores for intra vs inter
job family titles’ similarity were calculated, and averaged for reporting. The com-
parison of scores for some of the biggest job families can be seen in Fig. 5.



16 S. Ahuja et al.

Fig. 5. Inter versus intra job family title comparison scores.

As expected, the scores for inter job family title distances are higher than
those for intra job family distances. They are not very high, as there are many
different roles and functions even within the same job family. For example, both
“talent analyst senior” and “international human resources manager” in the job
family “HR”, but they are very different from each other.

In some of the smaller job families, the intra scores average was lower (or
equal) than the inter scores average. On investigation we found out that those
job families had only 2–3 jobs, and they all seemed very different. Where as
those jobs seem to have several common domain synonyms with job titles in
other families.

We compare our method to another approach of directly using WordNet
semantic similarity. For this comparison, we use the ratio of the average inter and
intra cluster similarity as our evaluation metric. The lower this ratio is, the better
is the cluster quality. For WordNet based semantic similarity we take the average
of all WordNet generated similarity scores for all possible pairs of keywords
between two given titles. We show the results for the biggest job families in
Fig. 6. We observe that our method leads to a consistently better cluster quality
compared to the method of simply using WordNet based average score as the
similarity metric.

Fig. 6. Comparison based on inter/intra cluster similarity ratio



Similarity Computation Exploiting 17

6 Conclusion and Future Work

In this paper, we described an approach to find similarity between job titles based
on the observation that each job title consist of three components - domain,
function and attribute. We used classifier models to identify the tokens in a
job description as one of the three components. Then we used a hierarchical
approach with domain, function and attribute as the levels of hierarchy to find
the similarity score between any two jobs.

As we observed via the intra vs inter job title similarity scores, the approach
gives fairly accurate results. In some of the smaller job families, the intra scores
average were not higher than the inter scores average. The accuracy of overall
matching scores depends on the accuracy of classifiers and the engine used to
match the three components with each other.

We believe that another way of identifying the three components of a job
description could be based on approaches used for finding similarities between
compound nouns. That exact approach will not suffice since job titles do not just
consist of nouns. Other semantic approaches to identify the three components,
or compound noun based approach to find similarity between domain words can
improve our results.

References

1. English Dictionary. https://en.oxforddictionaries.com/spelling/
nouns-ending-in-er-or-and-ar

2. Aizawa, A.: An information-theoretic perspective of Tf-idf measures. Inf. Process.
Manag. 39, 45–65 (2003)

3. Bekkerman, R., Gavish, M.: High-precision phrase-based document classification
on a modern scale. In: Proceedings of the 17th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. ACM (2011)

4. Javed, F., Luo, Q., McNair, M., Jacob, F., Zhao, M., Kang, T.S.: Carotene: a
job title classification system for the online recruitment domain. In: 2015 IEEE
First International Conference on Big Data Computing Service and Applications
(BigDataService), pp. 286–293. IEEE (2015)

5. Loper, E., Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the
ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural
Language Processing and Computational Linguistics, ETMTNLP 2002, Associ-
ation for Computational Linguistics, Stroudsburg, PA, USA, vol. 1, pp. 63–70
(2002). http://dx.doi.org/10.3115/1118108.1118117

6. Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38(11),
39–41 (1995)

7. Nakov, P.I., Hearst, M.A.: Semantic interpretation of noun compounds using ver-
bal and other paraphrases. ACM Trans. Speech Lang. Process. (TSLP) 10(3), 13
(2013)

8. Ó Séaghdha, D.: Learning compound noun semantics. Technical report, University
of Cambridge, Computer Laboratory (2008)

9. Riloff, E., Lehnert, W.: Information extraction as a basis for high-precision text
classification. ACM Trans. Inf. Syst. (TOIS) 12(3), 296–333 (1994)

https://en.oxforddictionaries.com/spelling/nouns-ending-in-er-or-and-ar
https://en.oxforddictionaries.com/spelling/nouns-ending-in-er-or-and-ar
http://dx.doi.org/10.3115/1118108.1118117


18 S. Ahuja et al.

10. Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the simi-
larity of short text snippets. In: Proceedings of the 15th International Conference
on World Wide Web, pp. 377–386. ACM (2006)

11. Zhu, Y., Javed, F., Ozturk, O.: Semantic similarity strategies for job title classifi-
cation. arXiv preprint arXiv:1609.06268 (2016)

http://arxiv.org/abs/1609.06268

	Similarity Computation Exploiting the Semantic and Syntactic Inherent Structure Among Job Titles
	1 Introduction
	2 Literature Survey
	3 Methodology
	3.1 Title Representation
	3.2 Preprocessing
	3.3 Feature Extraction
	3.4 Feature Vector Construction
	3.5 Model Creation
	3.6 Assignment Problem Formulation
	3.7 Final Score Computation

	4 Experimental Setup and Dataset
	5 Evaluation
	6 Conclusion and Future Work
	References




