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ABSTRACT

In repeated social dilemma settings, such as repeated Public Goods

Games (PGG), humans often come across a dilemma whether to

contribute or not based on past contributions from others. In such

settings, the decision taken by an agent/human actually depends

not only on the belief the agent has about other agents and the en-

vironment, but also on their beliefs about others’ beliefs. To factor

in these aspects, we propose a novel formulation of computational

theory of mind (ToM) to model human behavior in a repeated PGG

using interactive partially observable Markov decision processes (I-

POMDPs). Interactive particle filter (IPF) is a well known algorithm

used to approximately solve I-POMDP models for the agents to

find their optimal contributions. Number of particles assigned to

an agent in IPF can be translated into time and computational re-

sources. Solving I-POMDPs in a time-memory efficient manner

even in the case of small state spaces is a largely intractable prob-

lem. Also, maintaining a fixed number of particles assigned to each

agent, over time, will be highly inefficient in terms of resource

utilization. To address this problem, we propose a dynamic par-

ticle allocation algorithm for different agents based on how well

they could predict. We validate our proposed algorithm through

real experiments involving human agents. Our results suggest that

dynamic particle allocation based IPF for I-POMDPs is effective in

modelling human behaviours in repeated social dilemma setting

while utilizing computational resources in an effective manner.
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1 INTRODUCTION

In multi-agent settings, social dilemmas are characterized by situa-

tions in which there is a conflict between individual and collective

interest. Repeated public goods game (PGG) is a well known social

dilemma and it presents a generic social setting where agents try to

maximize their cumulative utility, as the game is played over sev-

eral rounds. Agents participating in a PGG, observe the historical

contribution of others to learn their behaviors and infer what others

will play and then decide what to play in the next round for utility

maximization. Khalvati et al. [16] hypothesize that the other agents

in the game form the environment and employ partially observable

Markov decision processes (POMDP) framework to model a human

agent. However, every agent takes decisions and builds their own

models about others in an autonomous fashion. Further, while mod-

eling a agent, it is necessary to consider what models others may
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be using and infer their actions based on those individual models.

This human ability to model others and understand the models

that others may have about him/her is well studied and generally

referred as Theory of Mind (ToM) [24]. In this paper, we employ in-

teractive partially observable Markov decision processes (I-POMDPs)

to model ToM ability of agents ([11],[12], [25]). I-POMDPs general-

ize POMDPs to a multi-agent setting, where each agent maintains

beliefs about an interactive state consisting of both the physical

states of the environment and the decision making models of the

other agents. However, solving I-POMDP models for optimal policy

of an individual agent in a multi-agent setting is computationally

intractable [8]. Intractability arises from uncertainty in the envi-

ronment, noisy/partial observations, stochastic state transitions,

complexity of the belief representation and complexity of the space

of policies. These issues have been addressed through generaliza-

tion of both particle filter and value iteration based methods for

I-POMDP framework in [8] and [9] respectively.

Interactive particle filter (IPF) algorithm [8] is generalization of the

particle filter algorithm to a multi-agent scenario. It is an effective

approximation technique for implementing I-POMDPs. It uses a

belief vector of particles to maintain a belief over other agents’

models. Number of particles used for an agent in IPF is directly

proportional to computing resources and time of execution [13].

Thus, the number of particles is analogous to the cognitive cycles

that a agent puts into modelling other agents. An important aspect

of human behavior in a PGG is their differential focus on the actions

played by others. That is, humans unequally distribute cognitive

cycles tomodel other agents (andmodels that other agents use). This

asymmetric allocation of time/focus by humans can be based on

the accuracy with which they are able to predict the contributions

of other agents. This helps humans with their limited cognitive

ability to maintain focus on more unpredictable agents (agents who

cannot be predicted with high accuracy). IPF works with the same

number of particles for every agent in all the rounds, however, we

propose a modified IPF algorithm with dynamic particle allocation

(DPA) to capture differential focus exhibited in human behaviour.

It assigns or allocates appropriate number of particles for belief

over each agent’s model so that the agent’s action can be predicted

with higher accuracy and lower computational load. This approach

allows us to assign larger number of particles for beliefs over models

of agents with complex behaviour, whose actions are not easy to

predict. This helps an I-POMDP based agent to take better actions

in a PGG with limited computational resources.

To the best of our knowledge, our paper proposes the first com-

putational ToM based algorithm which implements DPA between

different participating agents during belief update calculations. Fur-

ther, we adapt this algorithm for PGGs and conduct novel empirical

studies with real humans to generate real world data. We use this

data to analyse I-POMDP modeling framework for human agents

in a social dilemma and also evaluate DPA while solving I-POMDPs.
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Under some mild assumptions on the state space, our results show

that I-POMDP approximates human contribution in a PGG more

accurately than POMDP models. This reinforces the fact that when

DPA is used, agents leverage a better belief about the other agents

to make a more well-reasoned contribution. Further, our results

show that I-POMDP with DPA learns other human models faster

than I-POMDPwithout DPA, which would help I-POMDPwith DPA

achieve a lower prediction error early in a game. This is achieved

by dynamically allocating more particles to agents with higher

prediction errors.

2 RELATEDWORK

Social dilemmas expose strains between group-rationality and self-

rationality [27]. Typically, cooperation improves the outcomes for

all. However, the lure of free riding and other such parasitic strate-

gies threatens the stability of any cooperative move. From a game

theoretic perspective, the Nash equilibrium strategy [17] is that

no one cooperatives. However, in experiments with human agents

[31], it has been seen that for repeated social dilemmas, cooperation

emerges. There have been a number of theories proposed to explain

this behavior including reciprocity[19][20], evolutionary mecha-

nisms [21], and reinforcement learning [5][4]. This paper leverages

the IPOMDP framework to create theory-of-mind enabled agents

and examines their behavior in a social dilemma embodied as a

canonical PGG.

Theory of mind [24] has received a great deal of attention in the

computer science community over the last few years. As we observe

the behavior of other people, we naturally attribute to them beliefs,

goals, and other latent mental states that we cannot directly observe.

Theory of mind aims to represent the latent state maintained by an-

other agent based upon the observable behavior of that agent. There

has been a vast body of work ([1]) that is related to the theory of

mind, especially in the domain of robotics where AI agents attempt

to understand the intentions of an human that it is collaborating

with [28], while making the robots more social. Recently, the no-

tion of the theory of mind has been extended beyond human-agent

interactions. Rabinowitz et al. [26] talks about, the theory of mind

in multi-agent setting, where every agent attempts to model the

behavior of other agents using meta-learning from observations of

their behavior. They have also shown to model other agents that use

either random, algorithmic or deep reinforcement learning based

methods. Other papers such as [3][23][2] use a Bayesian approach

to model the belief and desire dependent actions of other agents as

a partially observable Markov decision process (POMDP). The joint

belief state and reward state is then reconstructed via Bayesian

inference conditions on the agent’s behavior. Gmytrasiewicz and

Doshi [14], Wunder et al. [32] and Panella and Gmytrasiewicz [22]

extend POMDPs to the multi-agent setting where multiple agents

attempt to construct a model the of others. The construct is called

interactive POMDPs (IPOMDPs). The complexity lies in the fact

that an agent i must model how another agent j models it, and so on

and so forth. While the complexity of these approaches increased

very rapidly with the depth (or the number of levels) of modeling

abstractions, [8] describes a method to find approximate solutions

using particle filters.

3 PROBLEM SETTING AND MODEL

FORMULATION

3.1 The multi-round PGG

We consider a setting where N agents are playing a multi-round

PGG over a finite time horizon T . Let P = {1, · · · , P} be the set

of discrete actions from which each agent i can choose from in

every round of the PGG. The utility of agent i in a round t is given

by uti (a
t
i ,a

t
−i ) = eti − a

t
i +

β
N

∑N
k=1 a

t
k where eti is the endowment

given to agent i at the beginning of the round t and ati is the action

of the agent i in round t and at
−i is the actions of the all agents

except agent i in round t . In this paper, we use the notation −i to
denote all agents except agent i . According to [18] a single-shot

(i.e., for a fixed t ) PGG game with utility function uti , satisifies the

social dilemma constraints if eti = 1,∀i , ati ∈ [0, 1] and 1 < β < N .

Thus, all the discrete actions in P correspond to fractions in the

interval [0, 1]. The total discounted utility of agent i is given by

UTi =
∑T
t=1 γ

t−1utk (a
t
i ,a

t
−i ) where γ ∈ (0, 1] is the discount factor

for the multi-round PGG. It is assumed that each agent i plays the
multi-round PGG so as to optimizeUTi and the parameter β remains

constant for the entire game. Throughout this section, we use the

standard convention of using the indices i and j to denote specific

agents and k to denote a specific action. We also provide detailed

description of our notation in the supplementary material.

3.2 I-POMDP formulation of the the

multi-round PGG

We model each agent i in the multi-round PGG as an I-POMDP

agent wherein the agent has to choose its actions from the set P
in every round. A finitely nested I-POMDP model of an agent i
defined as the following:

I-POMDPi, ℓ = ⟨ISi,l ,A,Ti ,Ωi ,Oi ,Ri ⟩

where ISi, ℓ denotes the set of interactive states defined as ISi, ℓ =
S × Θj, ℓ−1, for a strategy vector ℓ ≥ 1. In this framework

• ISi,0 = S is the set of states of the physical environment,

• Θj, ℓ−1 is a class of (ℓ−1)
th

level intentional models of agent

j defined as

θ j, ℓ−1 = ⟨bj, ℓ−1,A,Ωj ,Tj ,O j ,Rj ,OCj ⟩

where bj, ℓ−1 is the agent j’s belief nested to the level (ℓ − 1)

and OCj is j’s optimality criterion.

Rest of the notation is standard as in [6]. Rewritingθ j, ℓ−1 asθ j, ℓ−1 =

⟨bj, ℓ−1, ˆθ j ⟩ where ˆθ j ∈ Θ̂j includes all the elements of the inten-

tional model other than the belief and is called the agent’s j frame.

In our context, the action set A is the joint action set of all the

agents in PGG and it can be defined as A =
N>
i=1

Ai , where Ai = P

is action set of each agent i . In this paper, we assume that: each

agent has a subjective opinion about how the whole group behaves

(acts) collectively. Since, each agent models the aggregate group

behaviour, we define ΨG = (ψG1,ψG2, · · · ,ψGP ) as a strategy of

the whole group in a PGG. If we let a = {a1,a2, . . . ,aN }1 represent

1
Considering the arbitrary nature of the PGG round, we drop the index t



Dynamic Particle Allocation to Solve Interactive POMDP Models for Social Decision Making AAMAS’19, May 2019, Montreal, Canada

the discrete actions of all N agents in an arbitrary round of our

PGG, then the assumption stated above results in

ψGk = P(ai = k ΨG ) ∀ agents i ∈ 1, 2, · · · ,N

i.e.,ψGk is the probability that the whole group chooses kth action

(from the set P) in that round. Note that

∑P
k=1ψGk = 1 and the

parameterψG is unknown to the agents. Under this assumption,

each agent i with an I-POMDP model will estimate how agent j
models the group strategy vector ΨG . In order to facilitate this, we

assume that the observation set of any agent i is factorizable into

the action set of the other agents’ action sets i.e., Ωi =
N>

k=1,k,i
Ai .

This formulation assumes that actions of all agents are observed

accurately by any agent without any noise in the observation.

Since, each ai has a finite set of outcomes from P, we assume

that ai drawn from a discrete distribution conditional upon ΨG ,
i.e., ai ΨG ∼ Discrete(ΨG ) ∀i = 1, . . . ,N . Now, we assume that

the group strategy parameter ΨG is drawn from a Dirichlet dis-

tribution whose parameters are given by αG = (αG1, · · · ,αGP ),
i.e., ΨG αG ∼ Dirichlet(αG ). After collecting our observation
data as a = {a1,a2, . . . ,aN } from a round of the PGG, we have

observations E = (E1, · · · ,EP ) where Ek denotes the number of

occurrences of kth action in a. Application of Bayes rule results in

ΨG a,αG ∼ Dirichlet(E+αG ). This property motivates us to use

αG as the physical state space (S) of our I-POMDP model, instead

of ΨG . Once the true αG is learnt, a reasonably approximate value

of ΨG can be recovered (for example: by computing the expected

value of Dirichlet distribution with parameters αG ).

The transition probability function Ti : S × A × S → [0, 1] de-
scribes results of agent i’s actions and is defined as Ti (s, a, s ′) =
Pr

(
s ′ = α ′

G
s = αG , a

)
where

Pr
(
s′ = α ′

G s = αG , a
)
=

{
1 if α ′

G
= αG + E

0 otherwise.

The observation function Oi : Ωi × S ×A→ [0, 1] specifies proba-
bilities of observations given agent’s actions and resulting states.

In our context it is defined as

Oi (p, a, s ′) = Pr (oi = p |s
′ = α ′

G , a) =
α ′Gp∑P
k=1 α

′
Gk

.

The reward function Ri : S ×A→ R represents agent i’s preferences
and in our context, it is defined as

Ri (s,a) = 1 − ai +
β

N
(

N∑
k=1

ak ) where 1 < β < N .

4 THE INTERACTIVE PARTICLE FILTER

ALGORITHMWITH DYNAMIC FOCUS ON

AGENTS

In this section, we propose a modified (resource-efficient) version of

the IPF algorithm [8] to approximately solve I-POMDPs in the PGG

framework presented earlier. However, our algorithm can be used

for a more general multi-agent setting other than PGG. Our version

of IPF builds on a plain version of the algorithm proposed in [8]

and dynamically focuses more resources on highly unpredictable

Algorithm 1 Interactive particle filtering with dynamic particle

allocation for approximating the belief update.

1: function Ipf-Dpa(
˜bt−1k,l , a

t−1
k , otk , ℓ, v

t−1
k,−k,l ,M , at−1

−k , upWtS)

2: returns

(
˜btk, ℓ , v

t
k,−k, ℓ

)
3:

˜b
tmp
k, ℓ ← ∅;

˜btk, ℓ ← ∅; totWt← 0; Q ← | ˜bt−1k, ℓ |

▷ | · | represents number of elements of a set or a vector

Computation of Agent-specific Particle Allocation Weights

4: for all is
(n),t−1
k = ⟨s(n),t−1,θ

(n),t−1
−k ⟩ ∈ ˜bt−1k, ℓ do

5: Pr
(
A−k θ (n),t−1

−k

)
← ApproxPolicy

(
θ (n),t−1
−k , ℓ − 1

)
6: â(n),t−1

−k, ℓ ∼ Pr
(
A−k θ (n),t−1

−k

)
7: ŝ (n),t ∼ Tk

(
S t at−1k , â(n),t−1

−k, ℓ , s (n),t−1
)

8: if (upW tS == TRUE) then

9: vtk,−k,l ← RecomPaWts

(
k, {â(n),t−1

−k, ℓ }
Q
n=1, v

t−1
k,−k, ℓ, a

t−1
−k , Q

)
10: form ← 1 to N andm , k do

11: totWt← totWt + vtk,m, ℓ

12: upWtVm ← TRUE

Importance Sampling

13: for all is
(n),t−1
k = ⟨s(n),t−1,θ

(n),t−1
−k ⟩ ∈ ˜bt−1k,l do

14: for all ot
−k ∈ Ω−k do

15: if (ℓ == 1) then

16: form ← 1 to N andm , k do

17: q ← Round(Q × (vtk,m,l /totWt))

18:
˜b
(n),t
m,0 ←

Level0BeliefUpdate( ˜b (n),t−1m,0 , ât−1m , otm, q)

19: θ
(n),t
m ← ⟨b

(n),t
m,0 , θ̂

(n)
m ⟩

20: θ
(n),t
−k = (θ

(n),t
m )m=Nm=1,m,k

21: is
(n),t
k ← ⟨̂s(n),t ,θ

(n),t
−k ⟩

22: else

23: form ← 1 to N andm , k do

24: q ← Round(Q × (vtk,m,l /totWt))

25:
˜b
(n),t
m,l−1 ←

Ipf-Dpa( ˜b (n),t−1m, ℓ−1
, ât−1m , otm, ℓ − 1,

vt−1m,−m, ℓ−1
, q, at−1

−k , upWtVm )

26: upWtVm ← FALSE

▷ upWtVm is themth
element of upWtV and it set

to FALSE to avoid calling RecomPaWts multiple times for the

same level ℓ in a round.

27: θ (n),tm = ⟨b (n),tm,l−1, θ̂
(n)
m ⟩

28: θ
(n),t
−k = (θ

(n),t
m )m=Nm=1,m,k

29: is
(n),t
k ← ⟨̂s(n),t ,θ

(n),t
−k ⟩

30: weight is (n),tk : w (n)t ← O−k (o
t
−k |s

(n),t , at−1k , ât−1
−k )

31: adjust weight:

w (n)t ← w (n)t ×Ok (o
t
k |s
(n),t at−1k , ât−1

−k )

32:
˜btmp
k,l

⋃
←−− (is (n),tk , w (n)t )

33: Normalize allw
(n)
t so that

∑N
n=1w

(n)
t = 1

Selection

ResampleM particles with replacement

{is
(n),t
k ,n = 1 · · ·M} from the set

˜b
tmp
k, ℓ according to the impor-

tance weights.

34:
˜btk,l ← {is

(n),t
k ,n = 1 · · ·M}
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Algorithm 2 Recomputation of weights based on comparison be-

tween ground truth and predictions made by each of the particles

in the belief

1: function RecomPaWts(k, {â
(n),t−1
−k,l }

Q
n=1,v

t−1
k,−k,l ,a

t−1
−k ,Q)

2: returns vtk,−k,l
3: form ← 1 to N andm , k do

4: τm ← 0

5: for n ← 1 to Q do

6: form ← 1 to N andm , k do

7: if â
(n),t−1
m,l ! = at−1m then

8: τm = τm + 1

▷ count number of incorrect predictions.

9: form ← 1 to N andm , k do

10: vtk,m,l ← vt−1k,m,l × e
ητm

▷ Exponentially Weighted (η > 0)

agents and lesser resources on the more predictable agents. This

augments the decision making process by enabling a more accurate

inference of the intentions of other agents leading to better quality

of decisions. In order to validate the proposed algorithm, we fur-

ther carry out detailed experiments applying this resource-efficient

algorithm on the multi-round PGG model described in the previous

section. In this section, we use the index k to denote an agent. Now,

we explain the details of the wrapper algorithm being executed by

an agent k which is being modelled as an I-POMDP. In this section,

we use the notation from [8]. In this wrapper algorithm for agent k ,
a loop is run for each discrete time period (round) till the horizon of

the game. The following sequence of three events, keep repeating

themselves at every discrete time instant untill the end of horizon:

(i) At time t − 1, agent k computes the near-optimal action

based on its current belief by calling ApproxPolicy function

(please refer to Section 9 and Appendix B of [8] for the

algorithm), and then executes this action. ApproxPolicy

computes an approximately optimal finite horizon policy

tree given an initial belief using value iteration when ℓ > 0.

(ii) At time t , agent k receives an observation from the environ-

ment.

(iii) At time t , agent k computes the revised belief based on the

action it took at time t − 1 and the observation it received

at time t by executing the interactive particle filter algo-

rithm with dynamic focus on agents (Ipf-Dpa) described in

Algorithm 1.

Ipf-Dpa requires an initial set of Q particles:
˜bt−1k, ℓ , that is approxi-

mately representative of the agent k’s prior belief: bt−1k, ℓ , along with

the action at time t − 1: at−1k . We also need the current observation

at time t : otk with the level of belief nesting: ℓ > 0. The nth particle

of the sample set
˜bt−1k, ℓ is denoted by is

(n)
k , this particle represents

the agent’s possible interactive state, in which the other agents’

belief may itself be a set of particles, i.e., is
(n)
k = ⟨s(n),θ

(n)
−k ⟩ where

θ
(n)
−k = ⟨

˜b
(n)
−k, ℓ−1, θ̂

(n)
−k ⟩. Note that

˜b
(n)
k,0 is a probability distribution

over the physical state space. Ipf-Dpa proceeds by propagating

each particle forward in time. In order to perform the propagation,

other agents’ action must be known. We solve for other agents’

model using ApproxPolicy to find a distribution over its actions,

from which its action is sampled (lines 5 – 6 in Algorithm 1). Then

we propagate the physical state for each particle in time using the

transition function of agent k in line 7.

In order to implement dynamic particle allocation, we maintain a

set of values to keep track of how each agent is able to predict the

actions of other agents. The variable vtk,m, ℓ
defined for all agents

k,m ∈ {1, · · · ,N }, for strategy level ℓ (initialized to 1) and time t :
stores a numeric value, which is a measure of how well agent k is

able to predict the actions of agentm when it is thinking at level ℓ

at time t . It is necessary to update this variable for all agents in each

round of the game. In the context of our PGG setting, it is assumed

that other agents’ actions at−1
−k are known accurately without any

noise. Availability of the ground truth for observations allows us

to evaluate the prediction accuracy of agents −k by comparing the

estimated action set {â
(n),t−1
−k, ℓ }

Q
n=1 with a

t−1
−k using RecomPaWts in

lines 8 – 9 of Algorithm 1. The function RecomPaWts (as described

in Algorithm 2) calculates the values to be assigned to the variable

vt−1k,−k,l . The weights represented byv
t−1
k,−k,l are assigned by agent k

to other agents −k based on their unpredictability. From agent k’s
perspective: vt−1k,m,l is an increasing function of the unpredictability

of agentm. RecomPaWts function characterizes unpredictability

of an agent in terms of the number of times a wrong prediction

is made. For agent m, the value of this error count is iteratively

updated in τm . However, this approach of characterizing unpre-

dictability can be performed through other metrics of calculating

error like: root mean square error, absolute error, relative error

etc. We carried out our experiments with both absolute error and

the error count and obtained similar outcomes. We further use an

exponential weighting scheme to update the weights of the agents

in line 10 of Algorithm 2. Exponential weighting equips dynamic

particle allocation with memory of errors from previous rounds

and the normalization of vtk,−k, ℓ with totW t (in lines 17 and 24 of

Algorithm 1) accentuates the relative differences between predic-

tion errors of different agents. The parameter η for the scheme is

chosen empirically. In Algorithm 1, upWtS ensures that weights

get updated only once per agent per level per round.

Now we update each agent’s model (line 14) based on other agents’

possible observations. Because the model is intentional, we must

update its belief state. If ℓ > 1, updating the other agent’s be-

lief requires recursively invoking the Ipf-Dpa for performing its

belief update (lines 23 – 29). This recursion in depth of the be-

lief nesting terminates when the level of nesting becomes one,

and a Level0BeliefUpdate function is executed (lines 16 – 21).

Level0BeliefUpdate function is described in Figure 5 of [8]. The

function Level0BeliefUpdate returns an updated belief based on

the transition function while considering other agents’ actions as

noise. However, we should note that the revised belief returned by

Level0BeliefUpdate algorithm consists of q number of particles

for the belief based on the parameter q passed to the algorithm. To

ensure that the output belief consists of q particles, we append the

following sequence of actions at the end of Level0BeliefUpdate.
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if (q == | ˜btk,0 |) then done.

if (q < | ˜btk,0 |)

remove | ˜btk,0 | − q particles uniformly at random from
˜btk,0.

if (q > | ˜btk,0 |)

add | ˜btk,0 | − q particles uniformly at random through resam-

pling with replacement from
˜btk,0.

Parameter q represents the appropriate number of particles needed

by agent k to store the belief about agentm and this is determined

by the current weights of the particles represented by vt−1k,m,l . This

parameter is calculated in lines 17 and 24 in Algorithm 1. Parameter

q is also used in the recursive call to Ipf-Dpa in line 25. Ipf-Dpa

uses this parameter to update the variableM , which is used to dy-

namically manage the number particles assigned to an agent. The

nested for loops in lines 13 and 14, generate |Ω−k |Q appropriately

weighted particles, but we resample M particles out of these (line

34 of Algorithm 1), using an unbiased resampling scheme. This

feature enables efficient use of computational resources (which is

analogous to the number of particles in our setup) by allocating

more particles for unpredictable agents and fewer for the more pre-

dictable agents. We note that the exponential weighting scheme for

adapting number of particles is applicable for each agent for each

level in the nested belief hierarchy and the updation of weighting

scheme is processed in a recursive manner.

Particle filter for a single agent performs sampling in proportion

to likelihood of perceiving the observation from the state that the

particle represents. This allows particle filters to focus the com-

putational resources on regions with high likelihood. For IPF and

Ipf-Dpa (multi-agent setting), in addition to using the agent’s own

observation for weighting, the other agent’s observations also par-

ticipate in the weighting process (lines 30 – 31 of Algorithm 1).

This step should not confused with our dynamic particle allocation

based on unpredictability of agents.

For a PGG setting, availability of ground truth about other’s actions

can be used to further improve Ipf-Dpa in two ways.

(i) Perform propagation of the physical state space using the

ground truth at−1
−k instead of â

(n),t−1
−k, ℓ in line 7. This approach

will further improve the accuracy of Ipf-Dpa.

(ii) In the PGG setting, the observations otk = at−1
−k and ot

−k ={
otj

}N
j=1, j,k

where otj = at−1
−j . Availability of the exact obser-

vation set for all other agents can be used to replace the set

of possible observations in the for loop in line 14.

In order to simplify the comparision between IPF and Ipf-Dpa and

highlight the dynamic particle allocation aspect of our paper, we

do not include the the ideas presented above in Algorithm 1. Ipf-

Dpa can be easily generalized for a different multi-agent setting

other than PGG where at−1
−k may not be observable and hence

unavailable as an input for the RecomPaWts function. For such

scenarios, RecomPaWts function can be generalized to evaluate the

prediction accuracy of an agent by comparing observation otk with

the expected value of the observation obtained from the probability

distribution over Ωk , conditional upon given agent’s actions and

resulting states. This probability distribution can be expressed as

Pr
(
Ωt
k ŝ(n),t ,at−1k

)
, where ŝ(n),t can be evaluated as shown in

line 7 of Algorithm 1.

5 EXPERIMENTS

We conducted multiple 2-agent PGG games and 4-agent PGG games

with humans to gather data to verify our PGG formulation and the

algorithm proposed in the previous section. Apart from analysing

the data gathered from PGG games involving humans, we also

perform several numerical simulations to evaluate and analyse

our model and algorithm. We use human-generated PGG data to

perform two comparisons:

Comparison (a): Intially, we compare I-POMDPs (with ℓ = 1) and

POMDPs (equivalent to I-POMDPs with ℓ = 0) for their capability

to predict human contribution in a PGG. We do so by replacing one

agent in a PGG involving humans with an I-POMDP (and POMDP)

model. This I-POMDP (and POMDP) model will predict contri-

butions from the other agents by observing their past behaviour.

We use IPF algorithm to solve I-POMDPs and partially observable

Monte Carlo planning (POMCP) algorithm [29] to solve POMDPs.

We perform this comparison for both 2-agent and 4-agent PGGs.

We also compare I-POMDPs and POMDPs by pitting them against

each other in a 2-agent PGG.

Comparison (b): Then, we compare IPF and Ipf-Dpa for their

capability to efficiently solve I-POMDPs and accurately predict

human contribution when an I-POMDP replaces a human agent in

the 4-agent PGG game.

Now, we describe the process of gathering human-generated data

for PGG and examine the quality of the data to verify predictable

trends. Then, these datasets are used for comparisons (a) and (b). We

provide more detailed descriptions of our experiments, parameters

chosen for solving I-POMDPs and detailed results in the supple-

mentary material.

5.1 Process of gathering human-generated data

and the quality of the gathered data

Five 2-agent PGGs were conducted among 10 human agents. The

datasets gathered from 2-agent PGG games were used for compari-

son (a). For every game, 2 human agents were randomly sampled

from 10 human agents without repetition to avoid bias. Each human

agent was assigned a unique ID which was kept private from other

agents. Human agents took part in PGGs remotely. Each human

agent was given 1 unit of the endowment at the beginning of each

round and then they were asked to contribute a portion of their

endowment in that round. If N is the total number of agents, then

β/N is called the marginal per capita return (MPCR). For the 2-

agent scenario, we conducted the PGG game for β = {1.5, 1.6, 1.7}.
Values of β are chosen such that they preserve social dilemma. Ev-

ery game lasted for 30 rounds to enable human agents understand

the dynamics of the game. To further assist agents in understanding

the dynamics of their game, they were infomed about their utility

function, the value of β , previous rewards and previous contribu-

tions from others through an user interface (UI). Each round of

game was 30 seconds long to let human agents think and decide

upon their contribution in each round based on past contributions

from others. We also conducted three 4-agent PGG games with 12

human agents. The data gathered from 4-agent PGG games was
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Figure 1: UI used for conducting PGG games with human participation

2 agent games (I-POMDP agent) 0.417

4 agent games (I-POMDP agent) 0.419

2 agent games (POMDP agent) 0.44666

4 agent games (POMDP agent) 0.4501

Figure 2: Average RMSE of I-POMDP and

POMDP agents for predicting human actions.
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Avg. contributions of agents w.r.t. β and avg. contributions of agents over 30 rounds in

a 4-agent PGG with β = 3.

used for comparisons (a) and (b) as described before. We followed

the same procedure as we followed in conducting 4-agent games

with slightly different values of β = {2, 3, 3.5}. For all simulations

and experiments in this paper, we fix the discount factor γ = 0.99.

Figure 1 gives a snapshot of the UI that each agent used in the game.

Human-generated data from both 2-agent and 4-agent games show

predictable trends in terms of their dependence on β . Higher value
of β implies higher marginal per capita returns with lower cost

of cooperation, thus agents are expected to contribute more. For

relatively smaller β , the human agents tend to not contribute or

contribute less. These trends can be observed in Figure 3, where

average contribution of all agents in a PGG increases with increas-

ing values of β . Free-riding is another common behavior exhibited

in PGG games with higher number of agents (decrease in MPCR)

[15]. Human-generated data from 4-agent games with β = {3, 3.5}
exhibited this behavior. We plot the avg. contribution of each agent

for every ten rounds of the PGG (β = 3) in Figure 4. It can be

observed that Agent 3 preferred not to contribute much in most of

the rounds and received as much reward as possible by leveraging

the public contribution of high contributing peers such as Agent 2

and Agent 4.

5.2 Analysis of data gathered from human

agents for I-POMDP vs. POMDP

For comparison (a) mentioned above, we consider data from both

2-agent and 4-agent PGG games. In each game, we replace one

agent with an I-POMDP model and the remaining are real human

agents along with their actions in the 30 rounds of the PGG con-

cluded before. I-POMDP agent takes new actions in each round by

predicting the possible action of the human agent(s) based on the

action taken by the human agent(s) in the past rounds. For the I-

POMDP agent, we compute the Mean Square Error (MSE) between

the predictions it makes and the actual values of the contribution

levels of the human agent(s) in each round. The same experiment

is carried out with a POMDP replacing one human agent. Similarly,

we iterate over all the agents involved in the PGG by replacing one

agent at a time with an I-POMDP (and POMDP) and perform the

same experiment. We repeat these experiments for all five humans

who played 2-agent PGG games to get 5 x 2 = 10 experiments

for each of I-POMDP and POMDP agents. We perform the same

experiments for each of the three 4-agent PGG games where three

agents are human agents from the PGGs conducted before, while

the fourth agent is replaced by an I-POMDP (and POMDP) in the

experiment. We repeat these experiments for all four humans who

played 4-agent PGGs to get 4 x 3 = 12 experiments for each of

I-POMDP and POMDP agents.

We have provided the average RMSE value of both I-POMDP and

POMDP agents in predicting the real human actions in Figure 2. For

2 agent and 4 agent categories of games, the average is taken over

all the games played in a category and over all the agents in every

game. It is clear that I-POMDP is more accurate than POMDP in

predicting human actions in PGGs. The reason for I-POMDP agent

predicting the actions of the other agents more accurately is due

to the fact that I-POMDP agent considers the other agents to be

rational agents who are trying to maximize its rewards in every

round based on the past actions taken in the game. On the contrary,

in the case of the POMDP agent, it approximates other agent’s

actions as noise in the environment. Hence for the I-POMDP agent,

a strategy level one (ℓ = 1) belief makes it able to make better

predictions of the contributions of other agents.

5.3 Analysis of data gathered from human

agents for IPF vs. Ipf-DpA

For comparison (b), we conduct a similar experiment by letting an

I-POMDP agent replace a human agent in a 4-agent PGG game.

I-POMDP observes and predicts actions of three other humans over

30 rounds in those games on behalf of the replaced agent. Here,

we approximately solve for the predictions of I-POMDP using IPF
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and Ipf-Dpa as described in Algorithm 1. Figure 5 compares the

improvement in running MSE achieved with Ipf-Dpa agent against

that of a plain IPF after every round of a game, averaged over all

the 4-agent games. Figure 6 compares MSE of predictions from Ipf-

Dpa against the predictions from a plain IPF averaged over all the

4-agent games using a bar graph (representing the mean MSE) with

error bars (representing standard deviation in MSE). In Figure 5,

we use the below measure for calculating the relative improvement

in MSE due to Ipf-Dpa.

Percentaдe MSE Improvement due to Ipf-Dpa =

|Runninд MSE of Ipf-Dpa − Runninд MSE of Ipf|

Runninд MSE of Ipf

× 100

It can be observed that Ipf-Dpa agent achieves significant gains in

MSE reduction especially in early stages in the game when com-

pared to an IPF agent. Thus, we can infer that Ipf-Dpa learns other

human models faster than plain IPF. However, these results are

based on empirical studies and may vary depending on the com-

plexity of the strategies employed by the human agent. Ipf-Dpa

can be used to characterize the heterogeneity and complexity of

human strategies in real world PGG settings by observing particle

allocation to different agents over time. Figure 7 shows the number

of particles allocated over 30 rounds for predicting the contribution

levels for agents 2, 3 and 4 (top graph) and the running τ (cumula-

tive average of number of wrong predictions by each agent) values

for agents 2, 3 and 4 (bottom graph). Agent 1 (I-POMDP agent)

predicts contributions from other agents using Ipf-Dpa. It can be

observed that Agent 2’s running τ decreases faster than Agent 3

and Agent 4, hence, a smaller number of particles are assigned

for Agent 2. On the other hand, Agent 3 and Agent 4’s running τ
decreases slowly and hence more particles are assigned to Agent 3

and Agent 4 for generating better predictions. It should be noted

that any attempt to decrease the particle allocation for an agent

necessarily results in the increase in the allocation for some other

agents with an equal or smaller allocation.
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Improvement in running MSE achieved with Ipf-Dpa agent against

that of a plain IPF and bar chart based MSE comparisons for each

human agent’s predictions when Human 1 is replaced by an I-POMDP

and β = 2.

6 CONCLUSION AND FUTUREWORK

In this paper, we studied the complex problem of social decision

making in multi-agent setting. In this context, we used the pop-

ular construct of social dilemma namely the public goods game
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Figure 7: Average particle allocation to agents and agent-specific

running τ values for β = 2.

to study the decision making task. We adopted the computational

ToM model of I-POMDPs as our modeling paradigm and proposed

a resource-efficient interactive particle-filter based algorithm for

approximately solving the I-POMDPs which dynamically focuses

more resources on highly unpredictable agents and lesser resources

on the more predictable agents. The algorithm proposed in the

paper is generic and is applicable to multiple domains where appro-

priate IPOMDP can be formulated. Also, the model proposed in this

paper can analogously be scaled as proposed in some recent work

([30]) where the authors were able to exactly solve IPOMDPs for

up to 2000 agents in less than 6 hours. In principle, we can adapt

such approximations in our work and achieve similar scalability as

our work is also based on the belief update of IPOMDPs. Further,

we have implemented a parallelized version of IPF and IPF-DPA

algorithms which basically helps us to do the computation of every

particle in parallel. We conducted several real-world experiments

and used that data to (a) illustrate the effectiveness of I-POMDP

models over POMDP models in predicting human contributions in

a PGG and (b) evaluate the effectiveness of dynamic particle alloca-

tion when compared with a static particle allocation, while solving

an I-POMDP. For both (a) and (b), we show improvement in terms

of prediction accuracy, when compared with conventional practices.

Both (a) and (b) were carried out under mild assumptions on the

state space and the results from (a) and (b) show that our assump-

tions are useful in obtaining valid approximations for I-POMDP

solutions. Future research could examine dynamic focus based in-

teractive Point-Based Value Iteration [10] to solve I-POMDPs.

APPENDIX

Note on Algorithm 1

In order to perform other agent’s action must be known. This is

obtained by solving the other agent’s model (using the algorithm

APPROXPOLICY) to get its policy, and using its belief (contained

in the particle) to find a distribution over its actions (line 3 in Fig.

1). The algorithm is provided in the reference([7],[8]). We also use

the LEVEL0BELIEFUPDATE algorithm described in [8]. We modify

this algorithm based on the number of particles needed (described

in the paper).
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I S li Set of interactive states of the IPOMDP

I S0i = S Set of physical states of the IPOMDP

Mj,l−1 Set of possible models of agent j
Θj,l−1 Set of l − 1 intentional models of agent j
Ωj Set of observations of agent j
θj,l−1 Element of Θj,l−1 that comprises of

< bj,l−1, A, Ωj , Tj , Oj , Rj , OCj >
ˆθj Denotes all elements of θj,l−1 except the belief bj,l−1
bl−1j ∈ ∆(I S l−1j ) Agent j ’s belief nested to level l − 1
OCj Agent j ’s optimality criterion

Aj Action set of agent j
A Action set profile of all agents

Tj Transition function of agent j
Oj Observaton function of agent j
Rj Reward function of agent j
˜bt−1k,l Agent k ’s belief (represented as a set of particles) at level l

in round t − 1
at−1k Agent k ’s action in round t − 1
otk Agent k ’s observation at the beginning of round t

is (n),t−1k a particular interactive state represented by the particle n
s (n),t−1 the physical state at time (or round) t − 1 represented by

the nth particle

θ (n),t−1
−k the model of other agents according to agent k represented

in the nth particle at time t − 1
vt−1k,−k,l Measure of how well agent k is able to predict the actions

of agent−k (all agents except k ) when it is thinking at level
l at time t .

Table 1: Important Notations

Experimental Parameters

All the experiments were run on 2 high-end linux servers. The

configuration of each server is :Intel(R) Xeon(R) CPU E5-2683 v4 @

2.10GHz, 56 cores, 100 GB HDD, 100GB RAM. The code for IPF and

IPF-DPA algorithms was written in Julia programming language.

We use the Julia libraries for POMDP solvers (https://github.com/JuliaPOMDP).

In particular we use the Partially Observable Monte Carlo Planning

(POMCP) solver (https://github.com/JuliaPOMDP/BasicPOMCP.jl)

for solving the base POMDP model in the running of the IPF al-

gorithm. NUM-ACTIONS = 5, NUM-AGENTS = 4, ROUNDS =

30, HORIZON = 3, NUM-PARTICLES-IPOMDP = 10, DISCOUNT-

FACTOR = 0.9, NUM-PARTICLES-POMDP = 100.

Design of Empirical Experiments

Experimental set up for PGG with human subjects

• Volunteers for the experiments = 20

• Number of games needed is 10 for each 2-player, 4-player, N/2-player

PGG games.

• Gathering a pool of subjects:

– Step 1: People answered an open call to take part in our PGG

experiment voluntarily.

– Step 2: Let there be N subjects who initially enrolled for taking

part in PGG. The subjects will then be subdivided in a group of 2

(or 4) for simultaneous PGGs.

– Step 3: All [N/2] subjects will also take part in a game of PGG

over the rounds.

• Dividing N subjects in groups of 2:

– Step 1: Assign a random integer generated between 1 and N both

inclusive to every subject. This random numbers will be the IDs

of the subjects.

– Step 2: Generate 2 different random numbers without replacement

between 1 and N. The subjects corresponding to the generated

random numbers will form a group of 2 for a PGG.

– Step 3: Re-assign a random integer generated between 1 and N-2

both inclusive to every remaining subject. This random numbers

will be the new IDs of the subjects to be chosen for next PGG.

– Step 4: Generate 2 different random numbers without replacement

between 1 and N-2. The subjects corresponding to the generated

random numbers will form a group of 2 for the next PGG.

– Repeat step 3 and 4 until all the N – (N mod 2) subjects have been

assigned in [N/2] PGG games.

• Informing each individual separately about the procedure of the

game:

– Step 1: A slide deck will be shared with the subjects 20 minutes

prior to the beginning of the experiment. The slide deck will

contain: the game set up, the equation for PGG and procedure to

compute the utility at the end of the round, task the subjects are

expected to complete in each round.

– Step 2: Subjects will be given 10 minutes to read the slide deck

and will be given 10 more minutes if they have any questions

about the game set up.

• Gaming set up:

– Step 1: The procedure below will be repeated for all i where i

denotes the group numbers formed using 2.

– Step 2: For every assign a β randomly drawn from the set of

values from the region of social dilemma.

• Round by round gaming procedure:

– Step 1: At the beginning of the game each subject will be given

his/her ID number, and each of them will be informed how many

competing players they are playing against and the value of beta

that they will use in the utility function.

– Step 2: At the beginning of each round, a frequency distribution

of contribution levels of the group will be shown to the each

subject i in the group. Also, the utility obtained by subject i in

each round and the aggregated utility of the subject in the game

will be shown to the individual i. Also, the contribution amount

of subject i in each round so far will be shown to the subject i.

– Step 3: At the beginning of the round, each subject will be given

30 seconds to enter their contribution amount for the next round.

– Step 4: In case in if a subject fails to enter the contribution amount

in step 3, subject’s last entered contribution amount will be con-

sidered as the contribution level for the current round.

– Step 5: The game will go on for 30 rounds.

• Data to collected by the moderators from the game:

– Step 1: Collect IDs of each individual participating in a game

– Step 2: Collect contribution levels of each subject for every round.

– Step 3: Collect utility amount of each subject for every round.

• Break between game 1 and the rest of the games:

– Step 1: Moderators will take a 5 minute break to assess the data

after Game 1 to verify the quality of the results obtained are good

for analysis.

• Completion of the rest of the games:

– Step 1: Repeat the rest of the games simultaneously based on the

groups formed in 2.

• Repetition of the games:

– Step 1: For each group repeat the games 2 or 3 times, but assign

a different ID to every subject in the same group for different

games to remove any repetition bias from participating subjects.

• Games with 4 (or N/2) subjects:

– Step 1a: A game will be initiated where 4 subject groups will

take part in the game. The game will be repeated for 30 rounds

following the procedures 3, 4 and 5. Different 4 subject groups

can take part in simultaneous games.

– Step 1b: Repeat the games 2 times.

– Step 2a: A game will be initiated where N/2 subjects will take part

in the game. The game will be repeated for 30 rounds following

the procedures 3, 4 and 5.

– Step 2b: Repeat the games 2 times.
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